Jesus Santamaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578830/publications.pdf

Version: 2024-02-01

285 papers 12,142 citations

25034 57 h-index 94 g-index

290 all docs

290 docs citations

times ranked

290

14773 citing authors

#	Article	IF	CITATIONS
1	Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.	11.9	1,347
2	A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery. Nano Letters, 2009, 9, 3651-3657.	9.1	335
3	Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters, 2011, 11, 1395-1400.	9.1	241
4	Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications. Chemistry of Materials, 2006, 18, 1911-1919.	6.7	226
5	Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nature Catalysis, 2019, 2, 864-872.	34.4	218
6	Separations Using Zeolite Membranes. Separation and Purification Reviews, 1999, 28, 127-177.	0.8	211
7	Near-infrared–actuated devices for remotely controlled drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1349-1354.	7.1	177
8	Assessing Methods for Blood Cell Cytotoxic Responses to Inorganic Nanoparticles and Nanoparticle Aggregates. Small, 2008, 4, 2025-2034.	10.0	166
9	Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. Journal of Nanobiotechnology, 2019, 17, 16.	9.1	162
10	Separation of CO2/N2mixtures using MFI-type zeolite membranes. AICHE Journal, 2004, 50, 127-135.	3.6	155
11	Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst. Applied Catalysis A: General, 1996, 142, 375-386.	4.3	129
12	Goldâ€Triggered Uncaging Chemistry in Living Systems. Angewandte Chemie - International Edition, 2017, 56, 12548-12552.	13.8	128
13	Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against <i>Staphylococcus aureus</i> . Nanotechnology, 2013, 24, 015101.	2.6	124
14	State-of-the-Art in Zeolite Membrane Reactors. Topics in Catalysis, 2004, 29, 29-44.	2.8	116
15	Zeolite films and membranes. Emerging applications. Microporous and Mesoporous Materials, 2011, 144, 19-27.	4.4	115
16	Use of zeolite films to improve the selectivity of reactive gas sensors. Catalysis Today, 2003, 82, 179-185.	4.4	114
17	Sustained release of doxorubicin from zeolite–magnetite nanocomposites prepared by mechanical activation. Nanotechnology, 2006, 17, 4057-4064.	2.6	114
18	The use of zeolite films in small-scale and micro-scale applications. Chemical Engineering Science, 2004, 59, 4879-4885.	3.8	107

#	Article	IF	CITATIONS
19	Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale, 2019, 11, 18825-18836.	5.6	103
20	Removal of pollutants from indoor air using zeolite membranes. Journal of Membrane Science, 2004, 240, 159-166.	8.2	92
21	Methane oxidative coupling using porous ceramic membrane reactors—II. Reaction studies. Chemical Engineering Science, 1994, 49, 2015-2025.	3.8	91
22	Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 2017, 117, 437-446.	10.3	91
23	Methane oxidative coupling using porous ceramic membrane reactors—I. reactor development. Chemical Engineering Science, 1994, 49, 2005-2013.	3.8	89
24	A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 264-271.	4.3	88
25	Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 2011, 7, 3645-3655.	8.3	86
26	Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small, 2014, 10, 835-853.	10.0	86
27	Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 2011, 46, 2070-2076.	5 . 2	85
28	Non-oxidative methane conversion in microwave-assisted structured reactors. Chemical Engineering Journal, 2019, 377, 119764.	12.7	85
29	Preparation of Magnetic Nanoparticles Encapsulated by an Ultrathin Silica Shell via Transformation of Magnetic Fe-MCM-41. Chemistry of Materials, 2008, 20, 486-493.	6.7	84
30	Development of Stable, Water-Dispersible, and Biofunctionalizable Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 2011, 23, 2795-2802.	6.7	84
31	Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology, 2006, 17, 1188-1192.	2.6	83
32	Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab on A Chip, 2014, 14, 325-332.	6.0	83
33	Coupling of reaction and separation at the microscopic level: esterification processes in a H-ZSM-5 membrane reactor. Chemical Engineering Science, 2002, 57, 1557-1562.	3.8	81
34	Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. Catalysis Today, 2005, 104, 281-287.	4.4	77
35	Synthesis and stealthing study of bare and PEGylated silica micro- and nanoparticles as potential drug-delivery vectors. Chemical Engineering Journal, 2008, 137, 45-53.	12.7	76
36	Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunologic Research, 2013, 56, 317-324.	2.9	75

#	Article	IF	Citations
37	Continuous microfluidic synthesis and functionalization of gold nanorods. Chemical Engineering Journal, 2016, 285, 286-292.	12.7	7 5
38	A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 2011, 4, 1561-1565.	6.8	74
39	Comparative study of the synthesis of silica nanoparticles in micromixer–microreactor and batch reactor systems. Chemical Engineering Journal, 2011, 171, 674-683.	12.7	74
40	Gas Slug Microfluidics: A Unique Tool for Ultrafast, Highly Controlled Growth of Iron Oxide Nanostructures. Chemistry of Materials, 2015, 27, 4254-4260.	6.7	69
41	Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors. Science Advances, 2019, 5, eaau9000.	10.3	66
42	Preparation, characterization and pervaporation performance of mordenite membranes. Journal of Membrane Science, 2003, 216, 135-147.	8.2	65
43	Zeolite-modified cantilevers for the sensing of nitrotoluene vapors. Sensors and Actuators B: Chemical, 2009, 137, 608-616.	7.8	65
44	Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays. RSC Advances, 2016, 6, 111060-111069.	3.6	65
45	Synthesis, characterization and separation properties of a composite mordenite/ZSM-5/chabazite hydrophilic membrane. Journal of Membrane Science, 1998, 149, 99-114.	8.2	64
46	Characterization of zeolite membranes by temperature programmed permeation and step desorption. Journal of Membrane Science, 2002, 195, 125-138.	8.2	64
47	Preparation of MFI type tubular membranes by steam-assisted crystallization. Microporous and Mesoporous Materials, 2001, 50, 195-200.	4.4	63
48	Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale, 2014, 6, 9230.	5.6	63
49	Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air. ACS Sensors, 2021, 6, 2241-2251.	7.8	63
50	Separation of alcohols and alcohols/O2 mixtures using zeolite MFI membranes. Journal of Membrane Science, 1998, 142, 97-109.	8.2	62
51	Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Applied Catalysis A: General, 2003, 253, 257-269.	4.3	62
52	Amineâ€functionalized mesoporous silica: A material capable of CO ₂ adsorption and fast regeneration by microwave heating. AICHE Journal, 2016, 62, 547-555.	3.6	62
53	Oxidative dehydrogenation of butane using membrane reactors. AICHE Journal, 1997, 43, 777-784.	3.6	61
54	Use of a Ceramic Membrane Reactor for the Oxidative Dehydrogenation of Ethane to Ethylene and Higher Hydrocarbons. Industrial & Engineering Chemistry Research, 1995, 34, 4229-4234.	3.7	60

#	Article	IF	CITATIONS
55	Synthesis and characterisation of titanosilicate ETS-10 membranes. Microporous and Mesoporous Materials, 2004, 67, 79-86.	4.4	60
56	A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. Journal of Membrane Science, 2004, 244, 141-150.	8.2	60
57	Gas detection with SnO2 sensors modified by zeolite films. Sensors and Actuators B: Chemical, 2007, 124, 99-110.	7.8	60
58	Laser-driven heterogeneous catalysis: efficient amide formation catalysed by Au/SiO2 systems. Green Chemistry, 2013, 15, 2043.	9.0	58
59	Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Applied Thermal Engineering, 2019, 155, 226-238.	6.0	58
60	Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chemical Communications, 2011, 47, 680-682.	4.1	57
61	Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Advances, 2013, 3, 10427.	3. 6	56
62	Combustion of Volatile Organic Compounds over Platinum-Based Catalytic Membranes. Industrial & Lamp; Engineering Chemistry Research, 1997, 36, 4557-4566.	3.7	55
63	Single phase microreactor for the continuous, high-temperature synthesis of <4â€nm superparamagnetic iron oxide nanoparticles. Chemical Engineering Journal, 2018, 340, 66-72.	12.7	55
64	Development of ceramic membrane reactors with a non-uniform permeation pattern. Application to methane oxidative coupling. Chemical Engineering Science, 1994, 49, 4749-4757.	3.8	54
65	On the effect of morphological features on the properties of MFI zeolite membranes. Microporous and Mesoporous Materials, 2003, 60, 99-110.	4.4	54
66	On the use of fluidized bed catalytic reactors where reduction and oxidation zones are present simultaneously. Catalysis Today, 2005, 100, 181-189.	4.4	54
67	Oxidative Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Dehydrogenation of n-Butane in a Two-Zone	3.7	53
68	Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. Journal of Membrane Science, 2006, 278, 401-409.	8.2	53
69	Selective oxidations in micro-structured catalytic reactors—For gas-phase reactions and specifically for fuel processing for fuel cells. Catalysis Today, 2007, 120, 2-20.	4.4	53
70	Preparation of Pt/ZSM-5 films on stainless steel microreactors. Catalysis Today, 2007, 125, 2-10.	4.4	52
71	Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer. Journal of Nanobiotechnology, 2020, 18, 150.	9.1	52
72	Oxidation of Methane to Synthesis Gas in a Fluidized Bed Reactor Using MgO-Based Catalysts. Journal of Catalysis, 1996, 158, 83-91.	6.2	50

#	Article	IF	Citations
73	The Knudsen-diffusion catalytic membrane reactor: An efficient contactor for the combustion of volatile organic compounds. Applied Catalysis B: Environmental, 1996, 11, L19-L27.	20.2	48
74	Reported nanosafety practices in research laboratories worldwide. Nature Nanotechnology, 2010, 5, 93-96.	31.5	48
75	Facile synthesis of SiO2–Au nanoshells in a three-stage microfluidic system. Journal of Materials Chemistry, 2012, 22, 21420.	6.7	48
76	Au–PLA nanocomposites for photothermally controlled drug delivery. Journal of Materials Chemistry B, 2014, 2, 409-417.	5.8	48
77	Preparation of mordenite membranes for pervaporation of water-ethanol mixtures. Desalination, 2002, 148, 25-29.	8.2	47
78	Preparation and Characterization of Titanosilicate Ag-ETS-10 for Propylene and Propane Adsorption. Journal of Physical Chemistry C, 2007, 111 , $4702-4709$.	3.1	47
79	Microwave-Assisted Catalytic Combustion for the Efficient Continuous Cleaning of VOC-Containing Air Streams. Environmental Science & Environmental Sci	10.0	47
80	Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization. Applied Catalysis B: Environmental, 2020, 263, 118360.	20.2	47
81	A novel device for preparing zeolite—A membranes under a centrifugal force field. Journal of Membrane Science, 2003, 212, 135-146.	8.2	46
82	Antibody-Functionalized Hybrid Superparamagnetic Nanoparticles. Advanced Functional Materials, 2007, 17, 1473-1479.	14.9	46
83	Removal of VOCs at trace concentration levels from humid air by Microwave Swing Adsorption, kinetics and proper sorbent selection. Separation and Purification Technology, 2015, 151, 193-200.	7.9	46
84	Titania-coated gold nanorods with expanded photocatalytic response. Enzyme-like glucose oxidation under near-infrared illumination. Nanoscale, 2017, 9, 1787-1792.	5.6	45
85	Simulation of an inert membrane reactor for the oxidative dehydrogenation of butane. Chemical Engineering Science, 1999, 54, 2917-2925.	3.8	44
86	Oxidative Dehydrogenation of Butane over VMgO Catalysts. Journal of Catalysis, 2000, 195, 113-124.	6.2	43
87	Development of QCM sensors modified by AlPO4-18 films. Sensors and Actuators B: Chemical, 2006, 117, 143-150.	7.8	43
88	Development and application of micromachined Pd/SnO2 gas sensors with zeolite coatings. Sensors and Actuators B: Chemical, 2008, 133, 435-441.	7.8	43
89	Synthesis of Magnetic Nanocrystals by Thermal Decomposition in Glycol Media: Effect of Process Variables and Mechanistic Study. Industrial & Engineering Chemistry Research, 2012, 51, 8348-8357.	3.7	43
90	Highly sensitive SERS quantification of organophosphorous chemical warfare agents: A major step towards the real time sensing in the gas phase. Sensors and Actuators B: Chemical, 2018, 267, 457-466.	7.8	43

#	Article	IF	CITATIONS
91	Detection of organic vapours with Si cantilevers coated with inorganic (zeolites) or organic (polymer) layers. Sensors and Actuators B: Chemical, 2012, 171-172, 822-831.	7.8	42
92	Catalytic partial oxidation of methane to synthesis gas in a ceramic membrane reactor. Catalysis Letters, 1995, 30, 189-199.	2.6	41
93	Preparation of zeolite films as catalytic coatings on microreactor channels. Microporous and Mesoporous Materials, 2008, 115, 147-155.	4.4	41
94	Selective oxidation of CO in the presence of H2, CO2 and H2O, on different zeolite-supported Pt catalysts. Applied Catalysis A: General, 2009, 366, 242-251.	4.3	41
95	Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology, 2013, 24, 275603.	2.6	41
96	Gold-coated halloysite nanotubes as tunable plasmonic platforms. New Journal of Chemistry, 2014, 38, 2037.	2.8	41
97	Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharmaceutical Research, 2017, 34, 1296-1308.	3.5	41
98	Development and application of perovskiteâ€based catalytic membrane reactors. Catalysis Letters, 1998, 54, 69-78.	2.6	40
99	NIR-enhanced drug release from porous Au/SiO2 nanoparticles. Chemical Communications, 2010, 46, 7513.	4.1	40
100	Monoamine-grafted MCM-48: An efficient material for CO2 removal at low partial pressures. Chemical Engineering Journal, 2011, 175, 291-297.	12.7	40
101	Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous and Mesoporous Materials, 2008, 110, 303-309.	4.4	39
102	Methane oxidative coupling in fixed bed catalytic reactors with a distributed oxygen feed. A simulation study. Catalysis Today, 1992, 13, 353-360.	4.4	38
103	Plasmon-enhanced photocatalytic water purification. Physical Chemistry Chemical Physics, 2014, 16, 15111.	2.8	38
104	Oxidative dehydrogenation of propane on V/Al2O3 catalytic membranes. Effect of the type of membrane and reactant feed configuration. Chemical Engineering Science, 1999, 54, 1265-1272.	3.8	37
105	Pore ordering and surface properties of FDU-12 and SBA-15 mesoporous materials and their relation to drug loading and release in aqueous environments. Materials Research Bulletin, 2014, 59, 311-322.	5.2	37
106	Spontaneous formation of Au–Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Nanoscale, 2015, 7, 10152-10161.	5.6	37
107	Synthesis of Maleic Anhydride in an Inert Membrane Reactor. Effect of Reactor Configuration. Industrial & Configuration Chemistry Research, 2000, 39, 620-625.	3.7	36
108	Microwave-assisted mild-temperature preparation of neodymium-doped titania for the improved photodegradation of water contaminants. Applied Catalysis A: General, 2012, 441-442, 47-53.	4.3	36

#	Article	IF	Citations
109	Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Catalysis Science and Technology, 2019, 9, 5927-5942.	4.1	36
110	The use of post-synthetic treatments to improve the pervaporation performance of mordenite membranes. Journal of Membrane Science, 2006, 270, 32-41.	8.2	35
111	VOCs abatement using thick eggshell Pt/SBA-15 pellets with hierarchical porosity. Catalysis Today, 2014, 227, 179-186.	4.4	35
112	Electrospun Au/CeO2 nanofibers: A highly accessible low-pressure drop catalyst for preferential CO oxidation. Journal of Catalysis, 2015, 329, 479-489.	6.2	35
113	The effect of PEGylated hollow gold nanoparticles on stem cell migration: potential application in tissue regeneration. Nanoscale, 2017, 9, 9848-9858.	5.6	35
114	Separation of propylene/propane mixtures by titanosilicate ETS-10 membranes prepared in one-step seeded hydrothermal synthesis. Journal of Membrane Science, 2008, 311, 326-335.	8.2	34
115	Synthesis and magnetic behavior of ultra-small bimetallic FeCo/graphite nanoparticles. Nanotechnology, 2013, 24, 505702.	2.6	34
116	MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catalysis Today, 2000, 61, 101-107.	4.4	33
117	Synthesis and characterization of ultra-small magnetic FeNi/G and NiCo/G nanoparticles. Nanotechnology, 2012, 23, 085601.	2.6	33
118	Porous orthopedic steel implant as an antibiotic eluting device: Prevention of post-surgical infection on an ovine model. International Journal of Pharmaceutics, 2013, 452, 166-172.	5.2	33
119	Gas phase detection of chemical warfare agents CWAs with portable Raman. Journal of Hazardous Materials, 2020, 384, 121279.	12.4	33
120	Bioorthogonal Uncaging of Cytotoxic Paclitaxel through Pd Nanosheet–Hydrogel Frameworks. Journal of Medicinal Chemistry, 2020, 63, 9650-9659.	6.4	33
121	Deactivation by Coke of a Cr2O3/Al2O3 Catalyst During Butene Dehydrogenation. Journal of Catalysis, 1993, 142, 59-69.	6.2	32
122	Preparation of highly accessible mordenite coatings on ceramic monoliths at loadings exceeding 50% by weight. Chemical Communications, 2004, , 528-529.	4.1	32
123	Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol. Journal of Membrane Science, 2007, 299, 166-173.	8.2	32
124	Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology, 2012, 23, 155603.	2.6	32
125	Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	31
126	Overcoming Stability Problems in Microwave-Assisted Heterogeneous Catalytic Processes Affected by Catalyst Coking. Catalysts, 2019, 9, 867.	3.5	31

#	Article	IF	Citations
127	Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation. Catalysts, 2020, 10, 333.	3.5	31
128	Synthesis, Characterization, and Separation Properties of Snâ^' and Tiâ^'Silicate Umbite Membranes. Chemistry of Materials, 2006, 18, 2472-2479.	6.7	30
129	Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 646-656.	3.3	30
130	Goldâ€Triggered Uncaging Chemistry in Living Systems. Angewandte Chemie, 2017, 129, 12722-12726.	2.0	30
131	Methane combustion over unsupported iron oxide catalysts. Catalysis Today, 2001, 64, 43-50.	4.4	29
132	Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology, 2012, 23, 425605.	2.6	29
133	A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorineâ€Promoted Epoxidation of Ethylene. Angewandte Chemie - International Edition, 2016, 55, 11158-11161.	13.8	29
134	Separation of traces of CO from air using MFI-type zeolite membranes. Journal of Membrane Science, 2002, 201, 229-232.	8.2	28
135	Synthesis and characterization of MCM-48 tubular membranes. Journal of Membrane Science, 2006, 280, 867-875.	8.2	28
136	Zeolite-coated interdigital capacitors for humidity sensing. Sensors and Actuators B: Chemical, 2011, 157, 450-459.	7.8	28
137	Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous and Mesoporous Materials, 2012, 161, 84-90.	4.4	28
138	Evaluation of gold-decorated halloysite nanotubes as plasmonic photocatalysts. Catalysis Communications, 2014, 56, 115-118.	3.3	27
139	Use of Zeolite Membrane Reactors for the Combustion of VOCs Present in Air at Low Concentrations. Chemical Engineering Research and Design, 2005, 83, 295-301.	5.6	26
140	Preparation and characterization of two-layered mordenite-ZSM-5 bi-functional membranes. Microporous and Mesoporous Materials, 2006, 93, 318-324.	4.4	26
141	Controlled Covalent Functionalization of 2 Hâ€MoS ₂ with Molecular or Polymeric Adlayers. Chemistry - A European Journal, 2020, 26, 6629-6634.	3.3	26
142	Catalytic oxidation of butane to maleic anhydride enhanced yields in the presence of CO2 in the reactor feed. Applied Catalysis A: General, 2001, 210, 271-274.	4.3	25
143	Preparation and characterization of Pd-zeolite composite membranes for hydrogen separation. Desalination, 2002, 147, 425-431.	8.2	25
144	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	10.3	25

#	Article	IF	Citations
145	Modelling of a two-zone fluidised bed reactor for the oxidative dehydrogenation of n-butane. Powder Technology, 2001, 120, 88-96.	4.2	24
146	Mechanically reinforced biodegradable nanocomposites. A facile synthesis based on PEGylated silica nanoparticles. Polymer, 2010, 51, 6132-6139.	3.8	24
147	Combustion of Volatile Organic Compounds at Trace Concentration Levels in Zeolite-Coated Microreactors. Industrial & Engineering Chemistry Research, 2010, 49, 6941-6947.	3.7	24
148	110th Anniversary: Nucleation of Ag Nanoparticles in Helical Microfluidic Reactor. Comparison between Microwave and Conventional Heating. Industrial & Engineering Chemistry Research, 2019, 58, 12702-12711.	3.7	24
149	Regeneration strategies for coked fixed bed reactors. Chemical Engineering Science, 1991, 46, 11-21.	3.8	23
150	Thermal stability of \hat{I}^3 -Al2O3/ \hat{I} ±-Al2O3 mesoporous membranes. Journal of Membrane Science, 1998, 147, 173-185.	8.2	23
151	Synthesis of a mordenite/ZSM-5/chabazite hydrophilic membrane on a tubular support. Application to the separation of a water–propanol mixture. Chemical Communications, 1998, , 125-126.	4.1	23
152	Influence of the Reaction Atmosphere on the Characteristics and Performance of VPO Catalysts. Journal of Catalysis, 2000, 196, 1-7.	6.2	23
153	Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials, 2014, 35, 8134-8143.	11.4	23
154	Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. Journal of Colloid and Interface Science, 2022, 617, 704-717.	9.4	23
155	Fabrication of devices featuring covalently linked MoS2–graphene heterostructures. Nature Chemistry, 2022, 14, 695-700.	13.6	23
156	Simulation of an inert membrane reactor for the synthesis of maleic anhydride. AICHE Journal, 2000, 46, 2489-2498.	3.6	22
157	Simulation of the decomposition of di-cumyl peroxide in an ARSST unit. Thermochimica Acta, 2000, 362, 49-58.	2.7	22
158	AFM characterization of the growth of MFI-type zeolite films on alumina substrates. Microporous and Mesoporous Materials, 2004, 71, 33-37.	4.4	22
159	Preparation of Silicalite-1 Micromembranes on Laser-Perforated Stainless Steel Sheets. Chemistry of Materials, 2004, 16, 4847-4850.	6.7	22
160	Hollow porous implants filled with mesoporous silica particles as a two-stage antibiotic-eluting device. International Journal of Pharmaceutics, 2011, 409, 1-8.	5.2	22
161	Continuous Microwave-Assisted Synthesis of Silver Nanoclusters Confined in Mesoporous SBA-15: Application in Alkyne Cyclizations. Chemistry of Materials, 2020, 32, 2874-2883.	6.7	22
162	A new titanosilicate umbite membrane for the separation of H2. Chemical Communications, 2005, , 3036.	4.1	21

#	Article	IF	Citations
163	Microreactors with Pt/zeolite catalytic films for the selective oxidation of CO in simulated reformer streams. Catalysis Today, 2009, 147, S10-S16.	4.4	21
164	Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery. Expert Opinion on Drug Delivery, 2010, 7, 589-603.	5.0	21
165	Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. Journal of Gene Medicine, 2017, 19, e2964.	2.8	21
166	Kinetics of catalyst regeneration by coke combustion. I. Increased reaction rate due to the presence of chromium. Reaction Kinetics and Catalysis Letters, 1991, 44, 445-450.	0.6	20
167	Catalyst sintering in fixed-bed reactors: Deactivation rate and thermal history. AICHE Journal, 1992, 38, 237-243.	3.6	20
168	Catalytic dehydrogenation of n-butane in a fluidized bed reactor with separate coking and regeneration zones. Studies in Surface Science and Catalysis, 2000, , 2717-2722.	1.5	20
169	In-situ preparation of ultra-small Pt nanoparticles within rod-shaped mesoporous silica particles: 3-D tomography and catalytic oxidation of n-hexane. Catalysis Communications, 2017, 100, 93-97.	3.3	20
170	Effect of Nitinol surface treatments on its physicoâ€chemical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 337-347.	3.4	19
171	Preparation of stable MCM-48 tubular membranes. Journal of Membrane Science, 2009, 326, 137-144.	8.2	19
172	Silver nanowires/polycarbonate composites for conductive films. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012001.	0.6	19
173	Laser-Assisted Production of Carbon-Encapsulated Pt-Co Alloy Nanoparticles for Preferential Oxidation of Carbon Monoxide. Frontiers in Chemistry, 2018, 6, 487.	3.6	19
174	Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems. International Journal of Biological Macromolecules, 2019, 137, 62-68.	7.5	19
175	From bench scale to pilot plant: A 150x scaled-up configuration of a microwave-driven structured reactor for methane dehydroaromatization. Catalysis Today, 2022, 383, 21-30.	4.4	19
176	Regeneration of Coked Catalysts: The Effect of Aging upon the Characteristics of the Coke Deposits. Industrial & Engineering Chemistry Research, 1994, 33, 2563-2570.	3.7	18
177	On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors. Journal of Nanoparticle Research, 2011, 13, 4097-4108.	1.9	18
178	Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	18
179	Separation of Pd complexes from a homogeneous solution using zeolite membranes. Chemical Communications, 2001, , 2608-2609.	4.1	17
180	Spheres of Microporous Titanosilicate Umbite with Hierarchical Pore Systems. Advanced Functional Materials, 2008, 18, 1314-1320.	14.9	17

#	Article	IF	Citations
181	Study on template removal from silicalite-1 giant crystals. Materials Research Bulletin, 2009, 44, 1280-1287.	5.2	17
182	Strong bactericidal synergy between peracetic acid and silver-exchanged zeolites. Microporous and Mesoporous Materials, 2012, 156, 171-175.	4.4	17
183	Nanoporous silicalite-only cantilevers as micromechanical sensors: Fabrication, resonance response and VOCs sensing performance. Sensors and Actuators B: Chemical, 2012, 168, 74-82.	7.8	17
184	Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization. Materials Research Bulletin, 2013, 48, 4051-4057.	5.2	17
185	The chlorine release at Flix (Spain) on January 21st 1996: a case study. Journal of Loss Prevention in the Process Industries, 1998, 11, 153-160.	3.3	16
186	Development of microstructured zeolite films as highly accessible catalytic coatings for microreactors. Journal of Catalysis, 2007, 250, 190-194.	6.2	16
187	Heating of Zeolites under Microwave Irradiation: A Density Functional Theory Approach to the Ion Movements Responsible of the Dielectric Loss in Na, K, and Ca A-Zeolites. Journal of Physical Chemistry C, 2013, 117, 15659-15666.	3.1	16
188	Continuous production of iron-based nanocrystals by laser pyrolysis. Effect of operating variables on size, composition and magnetic response. Nanotechnology, 2013, 24, 325603.	2.6	16
189	Continuous-Mode Laser Ablation at the Solid–Liquid Interface of Pelletized Low-Cost Materials for the Production of Luminescent Silicon Carbide Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 2158-2165.	3.1	16
190	Selective delivery of photothermal nanoparticles to tumors using mesenchymal stem cells as Trojan horses. RSC Advances, 2016, 6, 58723-58732.	3.6	16
191	Nondestructive production of exosomes loaded with ultrathin palladium nanosheets for targeted bio-orthogonal catalysis. Nature Protocols, 2021, 16, 131-163.	12.0	16
192	A kinetic model for activation-deactivation processes in solid catalysts. Industrial & Engineering Chemistry Research, 1991, 30, 111-122.	3.7	15
193	Simulation of a catalytic membrane reactor for the oxidative dehydrogenation of butane. Chemical Engineering Science, 2002, 57, 2531-2544.	3.8	15
194	Preparation of Silicalite Membranes on Stainless Steel Grid Supports. Industrial & Engineering Chemistry Research, 2005, 44, 7627-7632.	3.7	15
195	Unintended emission of nanoparticle aerosols during common laboratory handling operations. Journal of Hazardous Materials, 2014, 279, 75-84.	12.4	15
196	High surface coverage of a self-assembled monolayer by <i>in situ</i> synthesis of palladium nanodeposits. Nanoscale, 2017, 9, 13281-13290.	5.6	15
197	Upconverting Carbon Nanodots from Ethylenediaminetetraacetic Acid (EDTA) as Nearâ€Infrared Activated Phototheranostic Agents. Chemistry - A European Journal, 2019, 25, 5539-5546.	3.3	15
198	Simulation and optimization of a fixed bed reactor operating in coking-regeneration cycles. Industrial & Lamp; Engineering Chemistry Research, 1992, 31, 2699-2707.	3.7	14

#	Article	IF	Citations
199	Fluidization of agglomerating particles: influence of the gas temperature and composition on the fluidization of a Li/MgO catalyst. Powder Technology, 1997, 92, 47-52.	4.2	14
200	The †PROCESO†index: a new methodology for the evaluation of operational safety in the chemical industry. Reliability Engineering and System Safety, 2006, 91, 349-361.	8.9	14
201	Growth of Silicalite-1 by a Method Involving Separation of Reactants. Chemistry of Materials, 2007, 19, 594-599.	6.7	14
202	Lipogels responsive to near-infrared light for the triggered release of therapeutic agents. Acta Biomaterialia, 2017, 61, 54-65.	8.3	14
203	Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray. Carbohydrate Polymers, 2021, 273, 118543.	10.2	14
204	Characterization of Zeolite Membranes by Measurement of Permeation Fluxes in the Presence of Adsorbable Species. Industrial & Engineering Chemistry Research, 2002, 41, 5071-5078.	3.7	13
205	Cu-BTC Functional Microdevices as Smart Tools for Capture and Preconcentration of Nerve Agents. ACS Applied Materials & Diterfaces, 2020, 12, 42622-42633.	8.0	13
206	Characterization of porous ceramic membranes for their use in catalytic reactors for methane oxidative coupling. Catalysis Today, 1995, 25, 263-269.	4.4	12
207	Oxidative Coupling of Methane in a Vibrofluidized Bed at Low Fluidizing Velocities. Industrial & Samp; Engineering Chemistry Research, 1995, 34, 1581-1587.	3.7	12
208	Combustion of volatile organic compounds over mixed-regime catalytic membranes. Reaction Kinetics and Catalysis Letters, 1999, 67, 13-19.	0.6	12
209	Development of etching processes for the micropatterning of silicalite films. Microporous and Mesoporous Materials, 2008, 114, 110-120.	4.4	12
210	Identification of TiO ₂ nanoparticles using La and Ce as labels: application to the evaluation of surface contamination during the handling of nanosized matter. Environmental Science: Nano, 2014, 1, 496-503.	4.3	12
211	Pumping Metallic Nanoparticles with Spatial Precision within Magnetic Mesoporous Platforms: 3D Characterization and Catalytic Application. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41529-41536.	8.0	12
212	Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates. Chemical Science, 2018, 9, 7766-7778.	7.4	12
213	Simulation of a membrane reactor for oxidative dehydrogenation of propane, incorporating radial concentration and temperature profiles. Chemical Engineering Science, 2001, 56, 57-67.	3.8	11
214	Improved Ti-silicate umbite membranes for the separation of H2. Journal of Membrane Science, 2008, 323, 207-212.	8.2	11
215	Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression. Acta Biomaterialia, 2018, 78, 123-136.	8.3	11
216	Regeneration of Fixed-Bed Catalytic Reactors Deactivated by Coke:Â Influence of Operating Conditions and of Different Pretreatments of the Coke Deposits. Industrial & Engineering Chemistry Research, 1996, 35, 1813-1823.	3.7	10

#	Article	IF	Citations
217	Magnetically-driven selective synthesis of Au clusters on Fe ₃ O ₄ nanoparticles. Chemical Communications, 2013, 49, 716-718.	4.1	10
218	Intense generation of respirable metal nanoparticles from a low-power soldering unit. Journal of Hazardous Materials, 2013, 256-257, 84-89.	12.4	10
219	Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation. Nanoscale, 2015, 7, 8566-8573.	5.6	10
220	Formation of Micro/Macroporous Hierarchical Spheres of Titanosilicate Umbite. European Journal of Inorganic Chemistry, 2008, 2008, 2448-2453.	2.0	9
221	Oxidative dehydrogenation of propane to propene, 1: Kinetic study on V/MgO. Canadian Journal of Chemical Engineering, 2001, 79, 891-901.	1.7	9
222	Oxidative dehydrogenation of propane to propene, 2: Simulation of a commercial inert membrane reactor immersed in a fluidized bed. Canadian Journal of Chemical Engineering, 2001, 79, 902-912.	1.7	9
223	Fluidized Bed Generation of Stable Silica Nanoparticle Aerosols. Aerosol Science and Technology, 2013, 47, 867-874.	3.1	9
224	SPIONs' Enhancer Effect on Cell Transfection: An Unexpected Advantage for an Improved Gene Delivery System. ACS Omega, 2019, 4, 2728-2740.	3.5	9
225	Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper–iron nanoparticles working under chemically relevant tumour conditions. Chemical Science, 2022, 13, 8307-8320.	7.4	9
226	On the favourable effect of CO2 addition in the oxidation of butane to maleic anhydride using membrane reactors. Applied Catalysis A: General, 2002, 231, 109-116.	4.3	8
227	Al-promoted increase of surface area and adsorption capacity in ordered mesoporous silica materials with a cubic structure. Chemical Communications, 2011, 47, 12337.	4.1	8
228	Fluorescently labelled SiO ₂ nanoparticles as tracers in natural waters: dependence of detection limits on environmental conditions. Environmental Science: Nano, 2016, 3, 631-637.	4.3	8
229	Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance. Journal of Micromechanics and Microengineering, 2016, 26, 084010.	2.6	8
230	Antibioticâ€eluting orthopedic device to prevent early implant associated infections: Efficacy, biocompatibility and biodistribution studies in an ovine model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1976-1986.	3.4	8
231	A comparative study of risk perception in small and large communities where chemical industries are present. Journal of Loss Prevention in the Process Industries, 2002, 15, 525-530.	3.3	7
232	Selective separation of homogeneous catalysts using silicalite membranes. Inorganica Chimica Acta, 2004, 357, 4577-4581.	2.4	7
233	Mechanochemical characterisation of silica-based coatings on Nitinol substrates. Microporous and Mesoporous Materials, 2007, 98, 292-302.	4.4	7
234	In-situ preparation of a highly accessible Pt/CNF catalytic layer on metallic microchannel reactors. Application to the SELOX reaction. Applied Catalysis A: General, 2015, 505, 193-199.	4.3	7

#	Article	IF	Citations
235	Modulation of bactericidal action in polymer nanocomposites: light-tuned Ag ⁺ release from electrospun PMMA fibers. RSC Advances, 2016, 6, 78036-78042.	3.6	7
236	Versatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route. Journal of Colloid and Interface Science, 2018, 513, 497-504.	9.4	7
237	Transfer of photothermal nanoparticles using stem cell derived small extracellular vesicles for in vivo treatment of primary and multinodular tumours. Journal of Extracellular Vesicles, $2022, 11, e12193$.	12.2	7
238	Methane oxidative coupling over different alkalidoped catalysts: A comparison of ceramic membrane reactors and conventional fixed bed reactors. Reaction Kinetics and Catalysis Letters, 1996, 59, 277-284.	0.6	6
239	The influence of the permeation regime on the activity of catalytic membranes for methane combustion. Journal of Catalysis, 2003, 218, 457-459.	6.2	6
240	Preparation and characterization of Co mordenite coatings onto cordierite monoliths as structured catalysts. Catalysis Today, 2008, 133-135, 42-48.	4.4	6
241	Preparation and application of silicalite-1 micromembranes on laser-perforated stainless steel sheets. Journal of Membrane Science, 2008, 316, 28-34.	8.2	6
242	Explosives detection using nanoporous coatings. Proceedings of SPIE, 2011, , .	0.8	6
243	Generation of TiO2Aerosols from Liquid Suspensions: Influence of Colloid Characteristics. Aerosol Science and Technology, 2013, 47, 1383-1392.	3.1	6
244	Ultrasmall Platinum Nanoparticles on Fe ₃ O ₄ : A Lowâ€Temperature Catalyst for the Preferential Oxidation Reaction. ChemCatChem, 2016, 8, 1479-1484.	3.7	6
245	Explosives Detection by Array of Si \$mu \$ -Cantilevers Coated With Titanosilicate-Type Nanoporous Materials. IEEE Sensors Journal, 2016, 16, 3435-3443.	4.7	6
246	Covalent Crossâ€Linking of 2Hâ€MoS ₂ Nanosheets. Chemistry - A European Journal, 2021, 27, 2993-2996.	3.3	6
247	LED-driven controlled deposition of Ni onto TiO2 for visible-light expanded conversion of carbon dioxide into C1–C2 alkanes. Nanoscale Advances, 2021, 3, 3788-3798.	4.6	6
248	Ultra-Fast Biomass Pyrolysis in a High-Temperature (2200° C), Fluid-Wall Reactor. Journal of Solar Energy Engineering, Transactions of the ASME, 1988, 110, 10-13.	1.8	5
249	Simultaneous Activation and Deactivation Phenomena in Isopropyl Alcohol Dehydrogenation on A Cu/Sio2 Catalyst. Studies in Surface Science and Catalysis, 1991, , 391-398.	1.5	5
250	Early detection of runaway reactions in systems with gas evolution using on-line mass spectrometry. Chemical Engineering Science, 1997, 52, 3107-3115.	3.8	5
251	Facilitated transport of O2 through alumina–zeolite composite membranes containing a solution with a reducible metal complex. Journal of Membrane Science, 2002, 203, 209-213.	8.2	5
252	Preparation of titanosilicate ETS-10 and vanadosilicate AM-6 membranes. Studies in Surface Science and Catalysis, 2005, , 423-430.	1.5	5

#	Article	IF	Citations
253	Optical vibrometer for mechanical properties characterization of silicalite-only cantilever based sensors. Microelectronic Engineering, 2010, 87, 1207-1209.	2.4	5
254	A versatile generator of nanoparticle aerosols. A novel tool in environmental and occupational exposure assessment. Science of the Total Environment, 2018, 625, 978-986.	8.0	5
255	High-Performance Thin-Layer Chromatography-Densitometry-Tandem ESI-MS to Evaluate Phospholipid Content in Exosomes of Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 1150.	4.1	5
256	Catalytic Reactor Engineering for the Oxidative Coupling of Methane. Use of a Fluidized Bed and of a Ceramic Membrane Reactor. Studies in Surface Science and Catalysis, 1994, , 387-394.	1.5	4
257	Reactor Engineering Studies of Methane Oxidative Coupling on a Li/Mgo Catalyst Studies in Surface Science and Catalysis, 1994, 81, 171-176.	1.5	4
258	Coupling of Consecutive Reactions in a Two-Layer, Flow-Through Catalytic Membrane. Industrial & Engineering Chemistry Research, 2001, 40, 1058-1064.	3.7	4
259	Explosives detection by using 8-microcantilever chips with self-heating elements modified with exchanged BEA type zeolites. , 2013 , , .		4
260	Development of a self-cleaning dispersion and exposure chamber: Application to the monitoring of simulated accidents involving the generation of airborne nanoparticles. Journal of Hazardous Materials, 2014, 280, 226-234.	12.4	4
261	Reinforced SIL-1 micromembranes integrated on chip: Application to CO2 separation. Journal of Membrane Science, 2014, 460, 34-45.	8.2	4
262	A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorineâ€Promoted Epoxidation of Ethylene. Angewandte Chemie, 2016, 128, 11324-11327.	2.0	4
263	Modeling the size distribution in a fluidized bed of nanopowder. Environmental Science: Nano, 2017, 4, 670-678.	4.3	4
264	Fast and simple assessment of surface contamination in operations involving nanomaterials. Journal of Hazardous Materials, 2019, 363, 358-365.	12.4	4
265	Preparation of Cu cluster catalysts by simultaneous cooling–microwave heating: application in radical cascade annulation. Nanoscale Advances, 2021, 3, 1087-1095.	4.6	4
266	Influence of the catalyst pretreatment on the relative rates of the main and coking reactions during acetylene hydrogenation on a NiO/NiAl2O4 catalyst. Studies in Surface Science and Catalysis, 1994, 88, 555-560.	1.5	3
267	Regeneration of Coked Catalysts in a Polytropic Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 5373-5379.	3.7	3
268	Exploring chemical composition effects on umbite structure and gas separation properties using atomistic simulations. Desalination, 2006, 199, 368-370.	8.2	3
269	Evaluation of optical and dielectrical properties of the zeolites. Desalination, 2006, 200, 601-603.	8.2	3
270	Gas Sensing with Silicon-Based Nanoporous Solids. , 2009, , 387-411.		3

#	Article	IF	CITATIONS
271	Portable lock-in amplifier for microcantilever based sensor array. Application to explosives detection using Co-BEA type zeolites as sensing materials. , 2014 , , .		3
272	Easy Preparation of Tanninâ€Based Ag Catalysts for Ethylene Epoxidation. ChemistrySelect, 2017, 2, 8509-8516.	1.5	3
273	SERS Detection of Neurotoxic Agents in Gas Phase Using Microfluidic Chips Containing Gold-Mesoporous Silica as Plasmonic-Sorbent. , 2019, , .		3
274	Tuning Alginate Microparticle Size via Atomization of Non-Newtonian Fluids. Materials, 2021, 14, 7601.	2.9	3
275	Effect of thermal aging upon the regeneration kinetics of a coked Cr2O3î—Al2O3 catalyst. Thermochimica Acta, 1996, 274, 249-259.	2.7	2
276	Deactivation of bulk iron oxide catalysts during methane combustion. Studies in Surface Science and Catalysis, 2001, 139, 487-494.	1.5	2
277	4th International Zeolite Membrane Meeting. Microporous and Mesoporous Materials, 2008, 115, 1-2.	4.4	2
278	Bioorthogonal Catalysis Goes Chiral. CheM, 2020, 6, 1853-1855.	11.7	2
279	Explosives Detection by array of Si $\&$ #x03BC;-cantilevers coated with titanosilicate type nanoporous materials. , 2014, , .		1
280	Kinetics of catalyst regeneration by coke combustion. II. Influence of temperature rise in the catalyst particles. Reaction Kinetics and Catalysis Letters, 1991, 44, 279-285.	0.6	0
281	Non-Uniform Sintering in Oxyregeneration of Fixed Bed Catalytic Reactors. Studies in Surface Science and Catalysis, 1991, , 629-636.	1.5	0
282	Selective detection of ammonia and benzene via zeolite films deposited on SnO/sub 2 //Pt-SnO/sub 2 / thick film gas sensors. , 0 , , .		0
283	Innentitelbild: A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of Ethylene (Angew. Chem. 37/2016). Angewandte Chemie, 2016, 128, 11082-11082.	2.0	0
284	Innenrücktitelbild: Gold‶riggered Uncaging Chemistry in Living Systems (Angew. Chem. 41/2017). Angewandte Chemie, 2017, 129, 12965-12965.	2.0	0
285	HRTEM characterization of core-shell Fe@C and Fe@SiO2 magnetic nanoparticles prepared by the arc-discharge plasma method., 2008,, 597-598.		0