Jane E Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578813/publications.pdf Version: 2024-02-01

IANE E IOHNSON

#	Article	IF	CITATIONS
1	Inhibition of Karyopherin β1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Research, 2022, 82, 3058-3073.	0.9	6
2	Evasion of Innate Immunity Contributes to Small Cell Lung Cancer Progression and Metastasis. Cancer Research, 2021, 81, 1813-1826.	0.9	41
3	Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer. Communications Biology, 2021, 4, 314.	4.4	44
4	ASCL1 represses a SOX9 ⁺ neural crest stem-like state in small cell lung cancer. Genes and Development, 2021, 35, 847-869.	5.9	32
5	ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. IScience, 2021, 24, 102953.	4.1	21
6	Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans. Cell Reports, 2020, 33, 108425.	6.4	35
7	<scp>ASCL1</scp> regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia, 2020, 68, 2613-2630.	4.9	31
8	bHLH factors in neurogenesis and neuronal subtype specification. , 2020, , 311-332.		3
9	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	1.1	119
10	Positive autofeedback regulation of <i>Ptf1a</i> transcription generates the levels of PTF1A required to generate itch circuit neurons. Genes and Development, 2020, 34, 621-636.	5.9	9
11	Subtype-specific secretomic characterization of pulmonary neuroendocrine tumor cells. Nature Communications, 2019, 10, 3201.	12.8	26
12	Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature Reviews Cancer, 2019, 19, 289-297.	28.4	692
13	Intrinsic DNA binding properties demonstrated for lineage-specifying basic helix-loop-helix transcription factors. Genome Research, 2018, 28, 484-496.	5.5	31
14	<scp>ASCL</scp> 1 regulates proliferation of <scp>NG</scp> 2â€glia in the embryonic and adult spinal cord. Glia, 2018, 66, 1862-1880.	4.9	20
15	The Epithelial Sodium Channel (αENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Translational Oncology, 2018, 11, 292-299.	3.7	14
16	Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Developmental Biology, 2018, 434, 149-163.	2.0	19
17	Different Originating Cells Underlie Intertumoral Heterogeneity in Lung Neuroendocrine Tumors. Cancer Discovery, 2018, 8, 1216-1218.	9.4	2
18	ldentifying a missing lineage driver in a subset of lung neuroendocrine tumors. Genes and Development, 2018, 32, 865-867.	5.9	13

Jane E Johnson

#	Article	IF	CITATIONS
19	MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell, 2017, 31, 270-285.	16.8	406
20	TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nature Communications, 2017, 8, 1668.	12.8	103
21	Repression by PRDM13 is critical for generating precision in neuronal identity. ELife, 2017, 6, .	6.0	37
22	Making sense out of spinal cord somatosensory development. Development (Cambridge), 2016, 143, 3434-3448.	2.5	161
23	ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Reports, 2016, 16, 1259-1272.	6.4	340
24	Regulating the dorsal neural tube expression of Ptf1a through a distal 3′ enhancer. Developmental Biology, 2016, 418, 216-225.	2.0	8
25	Opening a Chromatin Gate to Metastasis. Cell, 2016, 166, 275-276.	28.9	3
26	Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474.	1.1	156
27	SOX2 Reprograms Resident Astrocytes into Neural Progenitors in the Adult Brain. Stem Cell Reports, 2015, 4, 780-794.	4.8	192
28	The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung. Journal of Thoracic Oncology, 2015, 10, 553-564.	1.1	100
29	<i>Prdm12</i> specifies V1 interneurons through cross-repressive interactions with <i>Dbx1</i> and <i>Nkx6</i> genes in <i>Xenopus</i> . Development (Cambridge), 2015, 142, 3416-3428.	2.5	45
30	Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. Cancer Cell, 2015, 28, 429-440.	16.8	171
31	Misexpression of Ptf1a in Cortical Pyramidal CellsIn VivoPromotes an Inhibitory Peptidergic Identity. Journal of Neuroscience, 2015, 35, 6028-6037.	3.6	9
32	Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development (Cambridge), 2014, 141, 3721-3731.	2.5	36
33	ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14788-14793.	7.1	205
34	A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development (Cambridge), 2014, 141, 2803-2812.	2.5	86
35	Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. ELife, 2014, 3, e02669.	6.0	128
36	Prdm13 Mediates the Balance of Inhibitory and Excitatory Neurons in Somatosensory Circuits. Developmental Cell, 2013, 25, 182-195.	7.0	60

Jane E Johnson

#	Article	IF	CITATIONS
37	Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility. Molecular and Cellular Biology, 2013, 33, 3166-3179.	2.3	31
38	In Vivo Neuronal Subtype-Specific Targets of Atoh1 (Math1) in Dorsal Spinal Cord. Journal of Neuroscience, 2011, 31, 10859-10871.	3.6	56
39	Notch-Independent Functions of CSL. Current Topics in Developmental Biology, 2011, 97, 55-74.	2.2	39
40	Neurogenin 1 (Neurog1) expression in the ventral neural tube is mediated by a distinct enhancer and preferentially marks ventral interneuron lineages. Developmental Biology, 2010, 340, 283-292.	2.0	41
41	Multiple Transcriptional Mechanisms Control Ptf1a Levels during Neural Development Including Autoregulation by the PTF1-J Complex. Journal of Neuroscience, 2009, 29, 11139-11148.	3.6	54
42	Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Molecular and Cellular Neurosciences, 2008, 38, 595-606.	2.2	137
43	A nonclassical bHLH–Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes and Development, 2008, 22, 166-178.	5.9	116
44	Transcriptional Autoregulation Controls Pancreatic <i>Ptf1a</i> Expression during Development and Adulthood. Molecular and Cellular Biology, 2008, 28, 5458-5468.	2.3	93
45	Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development (Cambridge), 2007, 134, 285-293.	2.5	154
46	Commissural neuron identity is specified by a homeodomain protein, Mbh1,that is directly downstream of Math1. Development (Cambridge), 2005, 132, 2147-2155.	2.5	50
47	Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development (Cambridge), 2005, 132, 5461-5469.	2.5	195
48	Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development (Cambridge), 2005, 132, 2709-2719.	2.5	110
49	Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development (Cambridge), 2004, 131, 1319-1330.	2.5	95
50	Specification of dorsal spinal cord interneurons. Current Opinion in Neurobiology, 2003, 13, 42-49.	4.2	318
51	Numb and Numblike control cell number during vertebrate neurogenesis. Trends in Neurosciences, 2003, 26, 395-396.	8.6	32
52	The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development (Cambridge), 2002, 129, 2495-2505.	2.5	396
53	Crossinhibitory Activities of Ngn1 and Math1 Allow Specification of Distinct Dorsal Interneurons. Neuron, 2001, 31, 219-232.	8.1	286
54	Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 1997, 389, 966-970.	27.8	655

#	Article	IF	CITATIONS
55	Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell, 1993, 75, 463-476.	28.9	989
56	Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature, 1990, 346, 858-861.	27.8	525