
Xiaoxiong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Materials, 2018, 14, 58-74.	9.5	403
2	A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. Journal of Power Sources, 2016, 301, 47-53.	4.0	371
3	Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries Enabled by Amorphous Sulfurâ€Coated Reduced Graphene Oxide Cathodes. Advanced Energy Materials, 2017, 7, 1602923.	10.2	331
4	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154.	4.5	309
5	All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. Electrochemical Energy Reviews, 2021, 4, 101-135.	13.1	227
6	Lithium Ion-Conducting Glass?Ceramics of Li1.5Al0.5Ge1.5(PO4)3?xLi2O (x=0.0?0.20) with Good Electrical and Electrochemical Properties. Journal of the American Ceramic Society, 2007, 90, 2802-2806.	1.9	223
7	Interface Re-Engineering of Li ₁₀ GeP ₂ S ₁₂ Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2018, 10, 2556-2565.	4.0	220
8	A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics, 2016, 295, 65-71.	1.3	205
9	Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review. Energy Storage Materials, 2020, 24, 75-84.	9.5	199
10	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
11	A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochimica Acta, 2016, 210, 905-914.	2.6	185
12	All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 2016, 25, 018802.	0.7	169
13	An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. Journal of Materials Chemistry A, 2017, 5, 16984-16993.	5.2	168
14	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Materials, 2019, 17, 266-274.	9.5	114
15	MoS ₂ nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. RSC Advances, 2015, 5, 7938-7943.	1.7	109
16	Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries. Nature Communications, 2017, 8, 14308.	5.8	104
17	Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells. Journal of the Electrochemical Society, 2016, 163, A96-A101.	1.3	103
18	Co3O4 nanowires as high capacity anode materials for lithium ion batteries. Journal of Alloys and Compounds. 2012, 521, 95-100.	2.8	101

XIAOXIONG XU

#	Article	IF	CITATIONS
19	Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Materials Research Bulletin, 2008, 43, 2334-2341.	2.7	97
20	Highly Crystalline Layered VS ₂ Nanosheets for All-Solid-State Lithium Batteries with Enhanced Electrochemical Performances. ACS Applied Materials & Interfaces, 2018, 10, 10053-10063.	4.0	94
21	High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. Journal of Power Sources, 2018, 389, 140-147.	4.0	90
22	Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Materials, 2016, 4, 59-65.	9.5	85
23	UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature. Energy Storage Materials, 2019, 22, 337-345.	9.5	82
24	Superior lithium ion conduction of polymer electrolyte with comb-like structure <i>via</i> solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018, 6, 13438-13447.	5.2	80
25	Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. Journal of Materials Chemistry A, 2018, 6, 12098-12105.	5.2	76
26	Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1439-1442.	2.3	75
27	Influence of the Li–Ge–P–S based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. Solid State Ionics, 2015, 274, 8-11.	1.3	70
28	Fe ₃ S ₄ @Li ₇ P ₃ S ₁₁ nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. Journal of Materials Chemistry A, 2017, 5, 23919-23925.	5.2	69
29	Core–Shell Fe _{1–<i>x</i>} S@Na _{2.9} PS _{3.95} Se _{0.05} Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. ACS Nano, 2018, 12, 2809-2817.	7.3	68
30	Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. Journal of Power Sources, 2016, 307, 724-730.	4.0	67
31	One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. Journal of Power Sources, 2016, 331, 322-331.	4.0	65
32	A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. Journal of Power Sources, 2018, 394, 57-66.	4.0	65
33	Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy and Environmental Science, 2011, 4, 3509.	15.6	64
34	Nanoscaled Na ₃ PS ₄ Solid Electrolyte for All-Solid-State FeS ₂ /Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. ACS Applied Materials & Interfaces, 2018, 10, 12300-12304.	4.0	64
35	Structure Integrity Endowed by a Ti-Containing Surface Layer towards Ultrastable LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2016, 163, A1530-A1534.	1.3	43
36	Co ₃ S ₄ @Li ₇ P ₃ S ₁₁ Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14079-14086.	4.0	41

XIAOXIONG XU

#	Article	IF	CITATIONS
37	NiS Nanorods as Cathode Materials for All‧olid‧tate Lithium Batteries with Excellent Rate Capability and Cycling Stability. ChemElectroChem, 2016, 3, 764-769.	1.7	40
38	FeS nanosheets as positive electrodes for all-solid-state lithium batteries. Solid State Ionics, 2018, 318, 60-64.	1.3	36
39	Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O–Al2O3–GeO2–P2O5 glass–ceramics. Solid State Ionics, 2015, 270, 61-65.	1.3	32
40	Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics, 2017, 23, 2603-2611.	1.2	27
41	Facile synthesis of Co ₉ S ₈ nanosheets for lithium ion batteries with enhanced rate capability and cycling stability. New Journal of Chemistry, 2017, 41, 9184-9191.	1.4	24
42	<i>In Situ</i> Coating of Li ₇ P ₃ S ₁₁ Electrolyte on CuCo ₂ S ₄ /Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33810-33816.	4.0	19
43	Titanium Dioxide Doping toward High-Lithium-Ion-Conducting Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Glass-Ceramics for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2019, 2, 7299-7305.	2.5	18
44	Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2733-2738.	1.2	14
45	Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. Ionics, 2015, 21, 43-49.	1.2	13
46	Formation of Excellent Cathode/Electrolyte Interface with UV-Cured Polymer Electrolyte through In Situ Strategy. Journal of the Electrochemical Society, 2021, 168, 020511.	1.3	10