
Anna Carlmark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules, 2020, 21, 4479-4491.	2.6	11
2	Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 2545-2556.	2.6	27
3	A polymeric coat for nanodroplets. Nature Nanotechnology, 2019, 14, 640-641.	15.6	0
4	Macroscopic cellulose probes for the measurement of polymer grafted surfaces. Cellulose, 2019, 26, 1467-1477.	2.4	7
5	Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale, 2019, 11, 4287-4302.	2.8	22
6	Exploiting poly(É› â€caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites. Polymer Composites, 2019, 40, 1342-1353.	2.3	19
7	Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties. Macromolecular Materials and Engineering, 2018, 303, 1700594.	1.7	8
8	Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. Carbohydrate Polymers, 2018, 181, 871-878.	5.1	33
9	Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polymer Chemistry, 2017, 8, 1061-1073.	1.9	36
10	Tailoring dielectric properties using designed polymer-grafted ZnO nanoparticles in silicone rubber. Journal of Materials Chemistry A, 2017, 5, 14241-14258.	5.2	35
11	Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. ACS Applied Materials & Interfaces, 2017, 9, 35305-35318.	4.0	77
12	Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Advances, 2017, 7, 14947-14958.	1.7	16
13	Reduced and Surfaceâ€Modified Graphene Oxide with Nonlinear Resistivity. Macromolecular Rapid Communications, 2017, 38, 1700291.	2.0	14
14	Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization. Carbohydrate Polymers, 2017, 157, 1033-1040.	5.1	44
15	SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer, 2016, 99, 240-249.	1.8	39
16	Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states. Nanoscale, 2016, 8, 14730-14745.	2.8	11
17	Strong and tuneable wet adhesion with rationally designed layer-by-layer assembled triblock copolymer films. Nanoscale, 2016, 8, 18204-18211.	2.8	2
18	High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cellulose nanofibrils. Journal of Polymer Science Part A, 2016, 54, 3415-3424.	2.5	9

ANNA CARLMARK

#	Article	IF	CITATIONS
19	Fluorescent Covalently Cross-Linked Cellulose Networks via Light-Induced Ligation. ACS Macro Letters, 2016, 5, 139-143.	2.3	32
20	Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules, 2016, 17, 1414-1424.	2.6	43
21	Toward industrial grafting of cellulosic substrates via <scp>ARGET ATRP</scp> . Journal of Applied Polymer Science, 2015, 132, .	1.3	21
22	Tailor-made copolymers for the adsorption to cellulosic surfaces. European Polymer Journal, 2015, 65, 325-339.	2.6	42
23	Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone. Cellulose, 2015, 22, 1063-1074.	2.4	18
24	Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Advances, 2015, 5, 77643-77650.	1.7	21
25	Cellulose grafting by photoinduced controlled radical polymerisation. Polymer Chemistry, 2015, 6, 1865-1874.	1.9	35
26	Preparation and characterization of functionalized cellulose nanocrystals. Carbohydrate Polymers, 2015, 115, 457-464.	5.1	121
27	Bismuth complex catalysts for the <i>in situ</i> preparation of polycaprolactone/silicate bionanocomposites. Polymer International, 2014, 63, 709-717.	1.6	8
28	Polymer-grafted Al2O3-nanoparticles for controlled dispersion in poly(ethylene-co-butyl acrylate) nanocomposites. Polymer, 2014, 55, 2125-2138.	1.8	36
29	Mild and rapid surface initiated ring-opening polymerisation of trimethylene carbonate from cellulose. RSC Advances, 2014, 4, 20737.	1.7	18
30	Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Advances, 2014, 4, 25809.	1.7	19
31	Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polymer Chemistry, 2014, 5, 6076-6086.	1.9	62
32	Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. European Polymer Journal, 2013, 49, 2689-2696.	2.6	44
33	Nanobiocomposite Adhesion: Role of Graft Length and Temperature in a Hybrid Biomimetic Approach. Biomacromolecules, 2013, 14, 1003-1009.	2.6	11
34	Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chemical Society Reviews, 2013, 42, 5858.	18.7	137
35	Tailoring Cellulose Surfaces by Controlled Polymerization Methods. Macromolecular Chemistry and Physics, 2013, 214, 1539-1544.	1.1	37
36	Grafting Efficiency of Synthetic Polymers onto Biomaterials: A Comparative Study of Grafting- <i>from</i> versus Grafting- <i>to</i> . Biomacromolecules, 2013, 14, 64-74.	2.6	137

ANNA CARLMARK

#	Article	IF	CITATIONS
37	Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter, 2012, 8, 512-517.	1.2	28
38	Grafting of cellulose by ring-opening polymerisation – A review. European Polymer Journal, 2012, 48, 1646-1659.	2.6	229
39	Synthesis, adsorption and adhesive properties of a cationic amphiphilic block copolymer for use as compatibilizer in composites. European Polymer Journal, 2012, 48, 1195-1204.	2.6	20
40	Surface-initiated ring-opening metathesis polymerisation from cellulose fibres. Polymer Chemistry, 2012, 3, 727.	1.9	34
41	Facile Preparation Route for Nanostructured Composites: Surface-Initiated Ring-Opening Polymerization of ε-Caprolactone from High-Surface-Area Nanopaper. ACS Applied Materials & Interfaces, 2012, 4, 3191-3198.	4.0	40
42	Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA. ACS Applied Materials & amp; Interfaces, 2012, 4, 6796-6807.	4.0	29
43	Visualization of poly(methyl methacrylate) (PMMA) grafts on cellulose via high-resolution FT-IR microscopy imaging. Polymer Chemistry, 2012, 3, 307-309.	1.9	22
44	Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polymer Chemistry, 2012, 3, 1702-1713.	1.9	123
45	High temperature synthesis of vinyl terminated polymers based on dendronized acrylates: a detailed product analysis study. Polymer Chemistry, 2011, 2, 1163-1173.	1.9	16
46	Thermoresponsive nanocomposites from multilayers of nanofibrillated cellulose and specially designed N-isopropylacrylamide based polymers. Soft Matter, 2010, 6, 342-352.	1.2	46
47	New methodologies in the construction of dendritic materials. Chemical Society Reviews, 2009, 38, 352-362.	18.7	359
48	ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers. ACS Applied Materials & Interfaces, 2009, 1, 2651-2659.	4.0	149
49	Superhydrophobic and Self-Cleaning Bio-Fiber Surfaces via ATRP and Subsequent Postfunctionalization. ACS Applied Materials & Interfaces, 2009, 1, 816-823.	4.0	120
50	Intelligent Dual-Responsive Cellulose Surfaces via Surface-Initiated ATRP. Biomacromolecules, 2008, 9, 2139-2145.	2.6	140
51	Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter, 2007, 3, 866-871.	1.2	42
52	Dendronized Aliphatic Polymers by a Combination of ATRP and Divergent Growth. Macromolecules, 2004, 37, 322-329.	2.2	69
53	ATRP of Dendronized Aliphatic Macromonomers of Generation One, Two, and Three. Macromolecules, 2004, 37, 7491-7496.	2.2	32
54	Understanding Copper-Based Atom-Transfer Radical Polymerization in Aqueous Media. Journal of Physical Chemistry A, 2004, 108, 7129-7131.	1.1	46

#	Article	IF	CITATIONS
55	ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts. Biomacromolecules, 2003, 4, 1740-1745.	2.6	269
56	Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature. Journal of the American Chemical Society, 2002, 124, 900-901.	6.6	309
57	Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature. Polymer, 2002, 43, 4237-4242.	1.8	30