
Antonio Coluccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578621/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΙΟ COLUCCIA

#	Article	IF	CITATIONS
1	Anticancer Activity of (S)-5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((pyridin-4-ylmethyl)amino)propan-2-yl)-1H-indole-2-ca (RS4690), a New Dishevelled 1 Inhibitor. Cancers, 2022, 14, 1358.	boxa n ide	4
2	Exploring <scp>CCRL2</scp> Chemerin binding using Accelerated Molecular Dynamics. Proteins: Structure, Function and Bioinformatics, 2022, , .	1.5	3
3	Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. European Journal of Medicinal Chemistry, 2021, 221, 113532.	2.6	12
4	Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biology Direct, 2021, 16, 15.	1.9	12
5	Structure-activity relationship studies and inÂvitro and inÂvivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. European Journal of Medicinal Chemistry, 2020, 185, 111828.	2.6	5
6	Mutational analysis of the essential lipopolysaccharide-transport protein LptH of Pseudomonas aeruginosa to uncover critical oligomerization sites. Scientific Reports, 2020, 10, 11276.	1.6	6
7	New indolylarylsulfone non-nucleoside reverse transcriptase inhibitors show low nanomolar inhibition of single and double HIV-1 mutant strains. European Journal of Medicinal Chemistry, 2020, 208, 112696.	2.6	10
8	Modeling Epac1 interactions with the allosteric inhibitor AM-001 by co-solvent molecular dynamics. Journal of Computer-Aided Molecular Design, 2020, 34, 1171-1179.	1.3	2
9	Enzymatic kinetic resolution of desmethylphosphinothricin indicates that phosphinic group is a bioisostere of carboxyl group. Communications Chemistry, 2020, 3, .	2.0	5
10	Sulfonamide Inhibitors of β atenin Signaling as Anticancer Agents with Different Output on câ€MYC. ChemMedChem, 2020, 15, 2264-2268.	1.6	5
11	Targeting the Interaction between the SH3 Domain of Grb2 and Gab2. Cells, 2020, 9, 2435.	1.8	7
12	Discovery of Zika Virus NS2B/NS3 Inhibitors That Prevent Mice from Life-Threatening Infection and Brain Damage. ACS Medicinal Chemistry Letters, 2020, 11, 1869-1874.	1.3	14
13	Towards modern anticancer agents that interact with tubulin. European Journal of Pharmaceutical Sciences, 2019, 131, 58-68.	1.9	34
14	Switching on the activity of 1,5-diaryl-pyrrole derivatives against drug-resistant ESKAPE bacteria: Structure-activity relationships and mode of action studies. European Journal of Medicinal Chemistry, 2019, 178, 500-514.	2.6	21
15	Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B. Molecules, 2019, 24, 1739.	1.7	25
16	Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovascular Research, 2019, 115, 1766-1777.	1.8	25
17	Nox2-mediated platelet activation by glycoprotein (GP) VI: Effect of rivaroxaban alone and in combination with aspirin. Biochemical Pharmacology, 2019, 163, 111-118.	2.0	16
18	Drug Design and Synthesis of First in Class PDZ1 Targeting NHERF1 Inhibitors as Anticancer Agents. ACS Medicinal Chemistry Letters, 2019, 10, 499-503.	1.3	13

ANTONIO COLUCCIA

#	Article	IF	CITATIONS
19	New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. European Journal of Medicinal Chemistry, 2018, 152, 283-297.	2.6	30
20	β-catenin knockdown promotes NHERF1-mediated survival of colorectal cancer cells: implications for a double-targeted therapy. Oncogene, 2018, 37, 3301-3316.	2.6	18
21	Structure-Based Drug Design of Potent Pyrazole Derivatives against Rhinovirus Replication. Journal of Medicinal Chemistry, 2018, 61, 8402-8416.	2.9	26
22	3-Aroyl-1,4-diarylpyrroles Inhibit Chronic Myeloid Leukemia Cell Growth through an Interaction with Tubulin. ACS Medicinal Chemistry Letters, 2017, 8, 521-526.	1.3	8
23	Chiral Indolylarylsulfone Non-Nucleoside Reverse Transcriptase Inhibitors as New Potent and Broad Spectrum Anti-HIV-1 Agents. Journal of Medicinal Chemistry, 2017, 60, 6528-6547.	2.9	19
24	Heterocyclic pharmacochemistry of new rhinovirus antiviral agents: A combined computational and experimental study. European Journal of Medicinal Chemistry, 2017, 140, 528-541.	2.6	11
25	New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. European Journal of Medicinal Chemistry, 2017, 141, 197-210.	2.6	32
26	Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1091-1101.	2.5	28
27	Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules. Oncotarget, 2017, 8, 19738-19759.	0.8	19
28	Structural biology in antiviral drug discovery. Current Opinion in Pharmacology, 2016, 30, 116-130.	1.7	9
29	New Inhibitors of Indoleamine 2,3-Dioxygenase 1: Molecular Modeling Studies, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2016, 59, 9760-9773.	2.9	35
30	VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection. European Journal of Medicinal Chemistry, 2016, 115, 453-462.	2.6	6
31	An in-silico approach aimed to clarify the role of Y181C and K103N HIV-1 reverse transcriptase mutations versus Indole Aryl Sulphones. Journal of Molecular Graphics and Modelling, 2016, 63, 49-56.	1.3	4
32	Bicyclic Î ³ -amino acids as inhibitors of Î ³ -aminobutyrate aminotransferase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 295-301.	2.5	14
33	Structure-based Virtual Screening to Get New Scaffold Inhibitors of the Ser/Thr Protein Kinase PknB from Mycobacterium tuberculosis. Letters in Drug Design and Discovery, 2016, 13, 1012-1018.	0.4	4
34	In vitro characterisation of a pleconaril/pirodavir-like compound with potent activity against rhinoviruses. Virology Journal, 2015, 12, 106.	1.4	28
35	Structure-Based Lead Optimization and Biological Evaluation of BAX Direct Activators as Novel Potential Anticancer Agents. Journal of Medicinal Chemistry, 2015, 58, 2135-2148.	2.9	41
36	New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2015, 58, 5789-5807.	2.9	51

ANTONIO COLUCCIA

#	Article	IF	CITATIONS
37	Discovery of 1,1′-Biphenyl-4-sulfonamides as a New Class of Potent and Selective Carbonic Anhydrase XIV Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 8564-8572.	2.9	40
38	New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. European Journal of Medicinal Chemistry, 2015, 90, 497-506.	2.6	25
39	Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 9945-9957.	2.9	42
40	New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2014, 57, 6531-6552.	2.9	80
41	Discovery of Biarylaminoquinazolines as Novel Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 4598-4605.	2.9	28
42	New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2014, 80, 101-111.	2.6	21
43	An High-Throughput In Vivo Screening System to Select H3K4-Specific Histone Demethylase Inhibitors. PLoS ONE, 2014, 9, e86002.	1.1	14
44	Design, Synthesis, and Biological Evaluation of 1-Phenylpyrazolo[3,4- <i>e</i>]pyrrolo[3,4- <i>g</i>]indolizine-4,6(1 <i>H</i> ,5 <i>H</i>)-diones as New Glycogen Synthase Kinase-31² Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 10066-10078.	2.9	39
45	Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 123-149.	2.9	107
46	S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2013, 61, 438-452.	1.3	54
47	Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 2013, 98, 12-18.	1.9	87
48	Arylsulfone-based HIV-1 non-nucleoside reverse transcriptase inhibitors. Future Medicinal Chemistry, 2013, 5, 2141-2156.	1.1	17
49	De novo computer-aided design of novel antiviral agents. Drug Discovery Today: Technologies, 2012, 9, e213-e218.	4.0	2
50	Indole-2-carboxamides as Allosteric Modulators of the Cannabinoid CB1 Receptor. Journal of Medicinal Chemistry, 2012, 55, 5627-5631.	2.9	54
51	New Nitrogen Containing Substituents at the Indole-2-carboxamide Yield High Potent and Broad Spectrum Indolylarylsulfone HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 6634-6638.	2.9	52
52	The Tubulin Colchicine Domain: a Molecular Modeling Perspective. ChemMedChem, 2012, 7, 33-42.	1.6	138
53	Indolylarylsulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: New Cyclic Substituents at Indole-2-carboxamide. Journal of Medicinal Chemistry, 2011, 54, 1587-1598.	2.9	137
54	Design and Synthesis of 2-Heterocyclyl-3-arylthio-1 <i>H</i> -indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. Journal of Medicinal Chemistry, 2011, 54, 8394-8406.	2.9	70

ANTONIO COLUCCIA

#	Article	IF	CITATIONS
55	Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. European Journal of Medicinal Chemistry, 2011, 46, 3519-3525.	2.6	15
56	Advanced <i>in silico</i> Approaches in Antiviral Research. Antiviral Chemistry and Chemotherapy, 2010, 20, 147-151.	0.3	4
57	Looking for an Active Conformation of the Future HIV Type-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Antiviral Chemistry and Chemotherapy, 2010, 20, 213-237.	0.3	57
58	Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2935-2937.	1.0	41
59	New Arylthioindoles and Related Bioisosteres at the Sulfur Bridging Group. 4. Synthesis, Tubulin Polymerization, Cell Growth Inhibition, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2009, 52, 7512-7527.	2.9	87
60	Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery of Potent Inhibitors of HIV-1 Non-Nucleoside Wild Type and Resistant Mutant Strains Reverse Transcriptase and Coxsackie B4 Virus. Journal of Medicinal Chemistry, 2009, 52, 1922-1934.	2.9	54
61	Cdc25B Phosphatase Inhibitors in Cancer Therapy: Latest Developments, Trends and Medicinal Chemistry Perspective. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 843-856.	0.9	28
62	Indolyl aryl sulphones as HIV-1 reverse transcriptase inhibitors: docking and 3D QSAR studies. Expert Opinion on Drug Discovery, 2007, 2, 87-114.	2.5	5
63	Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structureâ^'Activity Relationships and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2007, 50, 2865-2874.	2.9	177
64	Indolyl Aryl Sulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors:  Role of Two Halogen Atoms at the Indole Ring in Developing New Analogues with Improved Antiviral Activity. Journal of Medicinal Chemistry, 2007, 50, 5034-5038.	2.9	56
65	New Arylthioindoles:Â Potent Inhibitors of Tubulin Polymerization. 2. Structureâ^'Activity Relationships and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2006, 49, 947-954.	2.9	331
66	Design, Molecular Modeling, Synthesis, and Anti-HIV-1 Activity of New Indolyl Aryl Sulfones. Novel Derivatives of the Indole-2-carboxamide. Journal of Medicinal Chemistry, 2006, 49, 3172-3184.	2.9	157
67	Indolyl Aryl Sulphones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Synthesis, Biological Evaluation and Binding Mode Studies of New Derivatives at Indole-2-carboxamide. Antiviral Chemistry and Chemotherapy, 2006, 17, 59-77.	0.3	25
68	Docking and 3-D QSAR Studies on Indolyl Aryl Sulfones. Binding Mode Exploration at the HIV-1 Reverse Transcriptase Non-Nucleoside Binding Site and Design of Highly ActiveN-(2-Hydroxyethyl)carboxamide andN-(2-Hydroxyethyl)carbohydrazide Derivatives. Journal of Medicinal Chemistry, 2005, 48, 213-223.	2.9	77
69	Arylthioindoles, Potent Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2004, 47, 6120-6123.	2.9	260