
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578586/publications.pdf Version: 2024-02-01

BO MENC

#	Article	IF	CITATIONS
1	A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, 2007, 36, 19-33.	5.5	711
2	In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure. Environmental Health Perspectives, 2010, 118, 1183-1188.	6.0	412
3	Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China. Environmental Science & Technology, 2008, 42, 326-332.	10.0	394
4	Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (<i>Oryza sativa</i> L.) Grain. Environmental Science & Technology, 2010, 44, 4499-4504.	10.0	260
5	Methylmercury Accumulation in Rice (Oryza sativa L.) Grown at Abandoned Mercury Mines in Guizhou, China. Journal of Agricultural and Food Chemistry, 2008, 56, 2465-2468.	5.2	226
6	The Process of Methylmercury Accumulation in Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2011, 45, 2711-2717.	10.0	216
7	A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012, 421-422, 73-81.	8.0	188
8	Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (<i>Oryza sativa) Tj ETQq0 0 0 2010, 58, 4951-4958.</i>	rgBT /Over 5.2	lock 10 Tf 50 183
9	Stable Mercury Isotope Variation in Rice Plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environmental Science & Technology, 2013, 47, 2238-2245.	10.0	179
10	Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 2016, 50, 9232-9241.	10.0	143
11	Re-evaluation of distillation and comparison with HNO3 leaching/solvent extraction for isolation of methylmercury compounds from sediment/soil samples. Applied Organometallic Chemistry, 2004, 18, 264-270.	3.5	133
12	Selenium in Soil Inhibits Mercury Uptake and Translocation in Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2012, 46, 10040-10046.	10.0	126
13	Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmospheric Environment, 2001, 35, 3039-3047.	4.1	120
14	Localization and Speciation of Mercury in Brown Rice with Implications for Pan-Asian Public Health. Environmental Science & Technology, 2014, 48, 7974-7981.	10.0	120
15	Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 2011, 45, 4205-4212.	4.1	118
16	Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research, 2009, 109, 201-206.	7.5	114
17	Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environmental Pollution, 2016, 215, 1-9.	7.5	111
18	Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	109

#	Article	IF	CITATIONS
19	Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmospheric Environment, 2008, 42, 7096-7103.	4.1	107
20	Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environmental Science & Technology, 2019, 53, 651-660.	10.0	107
21	Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 4451-4480.	4.9	101
22	Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review. Applied Geochemistry, 2010, 25, 1467-1477.	3.0	96
23	Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013–2017. Environmental Science & Technology, 2019, 53, 8938-8946.	10.0	95
24	Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil – Results from a greenhouse study. Journal of Hazardous Materials, 2011, 186, 119-127.	12.4	94
25	Rice consumption contributes to low level methylmercury exposure in southern China. Environment International, 2012, 49, 18-23.	10.0	92
26	Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 2020, 721, 137647.	8.0	91
27	Mercury cycling in a flooded rice paddy. Journal of Geophysical Research, 2012, 117, .	3.3	85
28	Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China. Atmospheric Environment, 2013, 81, 364-372.	4.1	83
29	Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 2016, 16, 12861-12873.	4.9	82
30	Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environmental Pollution, 2011, 159, 1283-1289.	7.5	81
31	Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China. Applied Geochemistry, 2008, 23, 2055-2064.	3.0	78
32	Prediction of Methyl Mercury Uptake by Rice Plants (Oryza sativa L.) Using the Diffusive Gradient in Thin Films Technique. Environmental Science & Technology, 2012, 46, 11013-11020.	10.0	78
33	Mercury Reduction and Cell-Surface Adsorption by <i>Geobacter sulfurreducens</i> PCA. Environmental Science & Technology, 2013, 47, 10922-10930.	10.0	78
34	How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674, 58-70.	8.0	75
35	Degradation of Methylmercury and Its Effects on Mercury Distribution and Cycling in the Florida Everglades. Environmental Science & Technology, 2010, 44, 6661-6666.	10.0	74
36	ldentification of fractions of mercury in water, soil and sediment from a typical Hg mining area in Wanshan, Guizhou province, China. Applied Geochemistry, 2010, 25, 60-68.	3.0	74

#	Article	IF	CITATIONS
37	Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. Science of the Total Environment, 2006, 368, 56-68.	8.0	72
38	Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences, 2016, 13, 2429-2440.	3.3	72
39	Mercury speciation and emissions from coal combustion in Guiyang, southwest China. Environmental Research, 2007, 105, 175-182.	7.5	70
40	Inorganic mercury accumulation in rice (<i>Oryza sativa</i> L.). Environmental Toxicology and Chemistry, 2012, 31, 2093-2098.	4.3	69
41	Mercury Stable Isotopic Compositions in Coals from Major Coal Producing Fields in China and Their Geochemical and Environmental Implications. Environmental Science & Technology, 2014, 48, 5565-5574.	10.0	67
42	Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicology and Environmental Safety, 2020, 195, 110462.	6.0	66
43	Accumulation and translocation of ¹⁹⁸ Hg in four crop species. Environmental Toxicology and Chemistry, 2014, 33, 334-340.	4.3	65
44	Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population. Environmental Science & Technology, 2015, 49, 9682-9689.	10.0	65
45	Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016, 16, 11125-11143.	4.9	60
46	Domestic and Transboundary Sources of Atmospheric Particulate Bound Mercury in Remote Areas of China: Evidence from Mercury Isotopes. Environmental Science & Technology, 2019, 53, 1947-1957.	10.0	59
47	Use of Mercury Isotopes to Quantify Mercury Exposure Sources in Inland Populations, China. Environmental Science & Technology, 2018, 52, 5407-5416.	10.0	58
48	Distribution and geochemical speciation of soil mercury in Wanshan Hg mine: Effects of cultivation. Geoderma, 2016, 272, 32-38.	5.1	57
49	Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environmental Research, 2015, 140, 198-204.	7.5	55
50	Mercury contents in rice and potential health risks across China. Environment International, 2019, 126, 406-412.	10.0	54
51	Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi Province, China. Applied Geochemistry, 2012, 27, 2280-2288.	3.0	53
52	Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou province, southwestern China: Part 1 – Total mercury. Applied Geochemistry, 2010, 25, 633-641.	3.0	51
53	Atmospheric mercury species measured in Guiyang, Guizhou province, southwest China. Atmospheric Research, 2011, 100, 93-102.	4.1	49
54	The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.). Environmental Pollution, 2017, 223, 11-18.	7.5	49

#	Article	IF	CITATIONS
55	The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China. Science of the Total Environment, 2008, 407, 497-506.	8.0	48
56	Atmospheric mercury emission from artisanal mercury mining in Guizhou Province, Southwestern China. Atmospheric Environment, 2009, 43, 2247-2251.	4.1	47
57	Speciation of methylmercury in rice grown from a mercury mining area. Environmental Pollution, 2010, 158, 3103-3107.	7.5	45
58	Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. Environmental Science & Technology, 2017, 51, 12321-12328.	10.0	43
59	Isotopic Composition of Gaseous Elemental Mercury in the Marine Boundary Layer of East China Sea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7656-7669.	3.3	43
60	Methanogenesis Is an Important Process in Controlling MeHg Concentration in Rice Paddy Soils Affected by Mining Activities. Environmental Science & Technology, 2020, 54, 13517-13526.	10.0	43
61	lsotopic Fractionation and Source Appointment of Methylmercury and Inorganic Mercury in a Paddy Ecosystem. Environmental Science & Technology, 2020, 54, 14334-14342.	10.0	43
62	The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang River, Southwest China. Environmental Toxicology and Chemistry, 2016, 35, 191-199.	4.3	40
63	Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou Province, Southwestern China: Part 2 – Methylmercury. Applied Geochemistry, 2010, 25, 642-649.	3.0	39
64	Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 2019, 249, 647-654.	7.5	39
65	Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387, 121967.	12.4	38
66	Environmental geochemistry of an abandoned mercury mine in Yanwuping, Guizhou Province, China. Environmental Research, 2013, 125, 124-130.	7.5	37
67	Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere, 2016, 147, 173-179.	8.2	37
68	Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. Environmental Sciences: Processes and Impacts, 2018, 20, 673-685.	3.5	36
69	Human co-exposure to mercury vapor and methylmercury in artisanal mercury mining areas, Guizhou, China. Ecotoxicology and Environmental Safety, 2011, 74, 473-479.	6.0	34
70	Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass (<i>Cladium jamaicense</i>) in the Florida Everglades Using a Multi-isotope Technique. Environmental Science & Technology, 2018, 52, 3384-3391.	10.0	34
71	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 2017, 17, 9133-9144.	4.9	33
72	The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, 2018, 88, 267-275.	3.0	33

#	Article	IF	CITATIONS
73	Sources and outflows of atmospheric mercury at Mt. Changbai, northeastern China. Science of the Total Environment, 2019, 663, 275-284.	8.0	32

Bioaccumulation of Hg in Rice Leaf Facilitates Selenium Bioaccumulation in Rice ($\langle i \rangle$ Oryza sativa) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50

75	Mercury cycling and isotopic fractionation in global forests. Critical Reviews in Environmental Science and Technology, 2022, 52, 3763-3786.	12.8	31
76	Stable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining area. Fundamental Research, 2021, 1, 259-268.	3.3	30
77	Mercury and methylmercury concentrations in two newly constructed reservoirs in the Wujiang River, Guizhou, China. Environmental Toxicology and Chemistry, 2011, 30, 530-537.	4.3	29
78	Mercury contamination status of rice cropping system in Pakistan and associated health risks. Environmental Pollution, 2020, 263, 114625.	7.5	29
79	Soil mercury pollution caused by typical anthropogenic sources in China: Evidence from stable mercury isotope measurement and receptor model analysis. Journal of Cleaner Production, 2021, 288, 125687.	9.3	29
80	Spatial distribution and methylation of mercury in a eutrophic reservoir heavily contaminated by mercury in Southwest China. Applied Geochemistry, 2013, 33, 182-190.	3.0	28
81	Mercury Exposure in Children of the Wanshan Mercury Mining Area, Guizhou, China. International Journal of Environmental Research and Public Health, 2016, 13, 1107.	2.6	28
82	Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China. Chemosphere, 2017, 185, 780-788.	8.2	28
83	Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. Environment International, 2021, 154, 106561.	10.0	27
84	Influence of Eutrophication on the Distribution of Total Mercury and Methylmercury in Hydroelectric Reservoirs. Journal of Environmental Quality, 2010, 39, 1624-1635.	2.0	26
85	Methylmercury in rice (Oryza sativa L.) grown from the Xunyang Hg mining area, Shaanxi province, northwestern China. Pure and Applied Chemistry, 2011, 84, 281-289.	1.9	26
86	Mercury bioaccumulation and its toxic effects in rats fed with methylmercury polluted rice. Science of the Total Environment, 2018, 633, 93-99.	8.0	25
87	The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity. Water Research, 2020, 169, 115217.	11.3	25
88	Mercury speciation and mobility in mine wastes from mercury mines in China. Environmental Science and Pollution Research, 2013, 20, 8374-8381.	5.3	24
89	Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. Science of the Total Environment, 2022, 803, 149967.	8.0	23
90	Mercury drives microbial community assembly and ecosystem multifunctionality across a Hg contamination gradient in rice paddies. Journal of Hazardous Materials, 2022, 435, 129055.	12.4	23

#	Article	IF	CITATIONS
91	Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China. Environmental Pollution, 2019, 245, 173-182.	7.5	22
92	Newly deposited atmospheric mercury in a simulated rice ecosystem in an active mercury mining region: High loading, accumulation, and availability. Chemosphere, 2020, 238, 124630.	8.2	21
93	The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient. Environmental Pollution, 2022, 292, 118321.	7.5	21
94	Mercury pollution in China: implications on the implementation of the Minamata Convention. Environmental Sciences: Processes and Impacts, 2022, 24, 634-648.	3.5	21
95	Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 2019, 251, 651-659.	6.4	20
96	Effect of Atmospheric Mercury Deposition on Selenium Accumulation in Rice (<i>Oryza sativa</i> L.) at a Mercury Mining Region in Southwestern China. Environmental Science & Technology, 2015, 49, 3540-3547.	10.0	17
97	Stable mercury isotopes stored in Masson Pinus tree rings as atmospheric mercury archives. Journal of Hazardous Materials, 2021, 415, 125678.	12.4	17
98	Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environmental Pollution, 2018, 240, 353-358.	7.5	16
99	Compound specific stable isotope determination of methylmercury in contaminated soil. Science of the Total Environment, 2018, 644, 406-412.	8.0	15
100	Extraction and Quantification of Nanoparticulate Mercury in Natural Soils. Environmental Science & Technology, 2022, 56, 1763-1770.	10.0	15
101	Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3905-3917.	3.3	14
102	Characteristics and distributions of atmospheric mercury emitted from anthropogenic sources in Guiyang, southwestern China. Acta Geochimica, 2016, 35, 240-250.	1.7	13
103	Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil. Environmental Toxicology and Chemistry, 2017, 36, 1202-1210.	4.3	13
104	Compound-Specific Stable Isotope Analysis Provides New Insights for Tracking Human Monomethylmercury Exposure Sources. Environmental Science & Technology, 2021, 55, 12493-12503.	10.0	11
105	Transport and fate of mercury under different hydrologie regimes in polluted stream in mining area. Journal of Environmental Sciences, 2011, 23, 757-764.	6.1	9
106	The influence of atmospheric Hg on Hg contaminations in rice and paddy soil in the Xunyang Hg mining district, China. Acta Geochimica, 2017, 36, 181-189.	1.7	9
107	Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.). Environmental Pollution, 2021, 291, 118259.	7.5	8
108	Weir building: A potential cost-effective method for reducing mercury leaching from abandoned mining tailings. Science of the Total Environment, 2019, 651, 171-178.	8.0	7

#	Article	IF	CITATIONS
109	Methylmercury bioaccumulation in rice and health effects: AÂsystematic review. Current Opinion in Environmental Science and Health, 2021, 23, 100285.	4.1	7
110	Uncovering geochemical fractionation of the newly deposited Hg in paddy soil using a stable isotope tracer. Journal of Hazardous Materials, 2022, 433, 128752.	12.4	7
111	Isotopic and Spectroscopic Investigation of Mercury Accumulation in <i>Houttuynia cordata</i> Colonizing Historically Contaminated Soil. Environmental Science & Technology, 2022, 56, 7997-8007.	10.0	7
112	The mercury isotope signatures of coalbed gas and oil-type gas: Implications for the origins of the gases. Applied Geochemistry, 2019, 109, 104415.	3.0	6
113	Kinetics and metabolism of mercury in rats fed with mercury contaminated rice using mass balance and mercury isotope approach. Science of the Total Environment, 2020, 736, 139687.	8.0	6
114	Separation of methylmercury from biological samples for stable isotopic analysis. Journal of Analytical Atomic Spectrometry, 2021, 36, 2415-2422.	3.0	6
115	Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. Environmental Science & Technology, 2021, 55, 13376-13386.	10.0	6
116	Occurrence of total mercury and methylmercury in rice: Exposure and health implications in Nepal. Ecotoxicology and Environmental Safety, 2021, 228, 113019.	6.0	6
117	Distribution and speciation of mercury in the Hongfeng Reservoir, Guizhou Province, China. Diqiu Huaxue, 2008, 27, 97-103.	0.5	5
118	Heavy Metal(loid)s Contamination in Ground Dust and Associated Health Risks at a Former Indigenous Zinc Smelting Area. International Journal of Environmental Research and Public Health, 2021, 18, 893.	2.6	4
119	Soil and ambient air mercury as an indicator of coal-fired power plant emissions: a case study in North China. Environmental Science and Pollution Research, 2021, 28, 33146-33157.	5.3	3
120	Shallow groundwater environmental investigation at northeastern Cairo, Egypt: quality and photo-treatment evaluation. Environmental Geochemistry and Health, 2021, 43, 4533-4551.	3.4	3
121	Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS Environmental Au, 0, , .	7.0	3
122	A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area. Environmental Pollution, 2021, 288, 117727.	7.5	2
123	Mercury in Inflow/Outflow Rivers of Reservoirs. , 2018, , 67-94.		1
124	Biogeochemical Process of Mercury in Reservoirs in the Main Stream of the Wujiang River. , 2018, , 95-199.		1