
Long Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578571/publications.pdf Version: 2024-02-01

LONG CHEN

#	Article	IF	CITATIONS
1	Catalytic functionalization of tertiary alcohols to fully substituted carbon centres. Organic and Biomolecular Chemistry, 2014, 12, 6033.	2.8	133
2	Activation of Chiral (Salen)AlCl Complex by Phosphorane for Highly Enantioselective Cyanosilylation of Ketones and Enones. Journal of the American Chemical Society, 2016, 138, 416-425.	13.7	108
3	Recent Advances in the Construction of Phosphorusâ€Substituted Heterocycles, 2009–2019. Advanced Synthesis and Catalysis, 2020, 362, 1724-1818.	4.3	105
4	Successively Recycle Waste as Catalyst: A One-Pot Wittig/1,4-Reduction/Paal–Knorr Sequence for Modular Synthesis of Substituted Furans. Organic Letters, 2015, 17, 1557-1560.	4.6	63
5	Metal-Free Tandem Friedel–Crafts/Lactonization Reaction to Benzofuranones Bearing a Quaternary Center at C3 Position. Journal of Organic Chemistry, 2012, 77, 4354-4362.	3.2	50
6	Recent progress in the synthesis of phosphorus-containing indole derivatives. Organic and Biomolecular Chemistry, 2018, 16, 7544-7556.	2.8	39
7	Recent Advances in the Catalytic Asymmetric Construction of Phosphorus-Substituted Quaternary Carbon Stereocenters. Synthesis, 2018, 50, 440-469.	2.3	37
8	A Highly Efficient Friedel–Crafts Reaction of Tertiary αâ€Hydroxyesters or αâ€Hydroxyketones to αâ€Quaternary Esters or Ketones. Chemistry - an Asian Journal, 2012, 7, 2510-2515.	3.3	35
9	Waste as Catalyst: Tandem Wittig/Conjugate Reduction Sequence to αâ€CF ₃ γâ€Keto Esters That Uses Ph ₃ PO as Catalyst for the Chemoselective Conjugate Reduction. Chemistry - an Asian Journal, 2013, 8, 556-559.	3.3	35
10	Dehydrative Cross oupling and Related Reactions between Alcohols (Câ^'OH) and P(O)â^'H Compounds for Câ^'P Bond Formation. Advanced Synthesis and Catalysis, 2019, 361, 3490-3513.	4.3	29
11	Synthesis of 2 <i>H</i> -chromenes: recent advances and perspectives. Organic and Biomolecular Chemistry, 2021, 19, 10530-10548.	2.8	29
12	Tandem Annulations of Propargylic Alcohols to Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 5170-5195.	4.3	27
13	BrÃ,nsted acid-catalysed regiodivergent phosphorylation of 2-indolylmethanols to synthesize benzylic site or C3-phosphorylated indole derivatives. Organic and Biomolecular Chemistry, 2018, 16, 7417-7424.	2.8	25
14	A highly efficient nucleophilic substitution reaction between R ₂ P(O)H and triarylmethanols to synthesize phosphorus-substituted triarylmethanes. Organic and Biomolecular Chemistry, 2018, 16, 951-956.	2.8	24
15	Recent Advances in the Direct Functionalization of Isoindolinones for the Synthesis of 3,3â€Disubstituted Isoindolinones. Advanced Synthesis and Catalysis, 2021, 363, 4159-4176.	4.3	22
16	Synthesis of C2â€Phosphorylated Indoles <i>via</i> Metalâ€Free 1,2â€Phosphorylation of 3â€Indolylmethanols with P(O)â€H Species. Advanced Synthesis and Catalysis, 2019, 361, 5311-5316.	4.3	20
17	Copper-catalyzed tandem phosphorylative allenylation/cyclization of 1-(<i>o</i> -aminophenyl)prop-2-ynols with the P(O)–H species: access to C2-phosphorylmethylindoles. Organic Chemistry Frontiers, 2020, 7, 980-986.	4.5	15
18	Direct C–OH/P(O)–H dehydration coupling forming phosphine oxides. Organic and Biomolecular Chemistry, 2018, 16, 5090-5093.	2.8	12

LONG CHEN

#	Article	IF	CITATIONS
19	Relay Cu(I)/BrÃ,nsted Base Catalysis for <i>Phospha</i> â€Michael Addition/5â€ <i>exo</i> â€ <i>dig</i> Cyclization/Isomerization of <i>in</i> â€ <i>situ</i> Formed <i>aza</i> â€Alkynyl <i>oâ€</i> quinone methides with P(O)â [^] H compounds to C3â€Phosphorylated Indoles. Advanced Synthesis and Catalysis, 2021, 363, 3006-3012.	4.3	9
20	Y(OTf)3-catalyzed phosphorylation of 2H-chromene hemiacetals with P(O)–H compounds to 2-phosphorylated 2H-chromenes. Organic and Biomolecular Chemistry, 2021, 19, 6812-6816.	2.8	7
21	A highly efficient thiourea catalyzed dehydrative nucleophilic substitution reaction of 3-substituted oxindoles with xanthydrols. RSC Advances, 2013, 3, 19880.	3.6	6
22	A HClO ₄ â€Catalyzed Substitutive Phosphorylation of Anthraceneâ€9â€ols with P(O)â´'H Compounds to Phosphorylated 9,10â€Dihydroanthracenes. Asian Journal of Organic Chemistry, 2020, 9, 2196-2200.	2.7	6
23	Dearomative 1,6-addition of P(O)–H to <i>in situ</i> formed <i>p</i> -QM-like ion pairs from 2-benzofuryl-ols to C3-phosphinoyl hydrobenzofurans. Organic Chemistry Frontiers, 2021, 8, 1756-1763.	4.5	6
24	Convenient synthesis of α-diarylmethylphosphonates by HOTf catalyzed Friedel-Crafts arylation of α-aryl α-hydroxyphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 168-177.	1.6	5
25	Acrolein. Synlett, 2013, 24, 2775-2776.	1.8	0
26	Copper(<scp>ii</scp>)-catalyzed direct dehydrative alkynylation of 2 <i>H</i> -chromene hemiketals with terminal alkynes to 2,2-disubstituted 2-alkynylated 2 <i>H</i> -chromenes. Organic and Biomologylar Chamistry, 2022, 20, 3785, 3789	2.8	0

Biomolecular Chemistry, 2022, 20, 3785-3789.