List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 11595.	1.7	224
2	Variability and Changes of Unfrozen Soils Below Snowpack. Geophysical Research Letters, 2022, 49, .	4.0	4
3	Arctic change reduces risk of cold extremes—Response. Science, 2022, 375, 729-730.	12.6	2
4	Evaluating the relationship between sudden stratospheric warmings and tropospheric weather regimes in the NMME phase-2 models. Climate Dynamics, 2021, 56, 2321-2338.	3.8	4
5	How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?. Environmental Research Letters, 2021, 16, 043002.	5.2	63
6	The Impact of Split and Displacement Sudden Stratospheric Warmings on the Troposphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033989.	3.3	14
7	Four distinct Northeast US heat wave circulation patterns and associated mechanisms, trends, and electric usage. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	10
8	Linking Arctic variability and change with extreme winter weather in the United States. Science, 2021, 373, 1116-1121.	12.6	145
9	Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 2020, 10, 20-29.	18.8	424
10	Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dynamics, 2019, 52, 1739-1760.	3.8	34
11	Improving Subseasonal Forecasting in the Western U.S. with Machine Learning. , 2019, , .		32
12	The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geoscientific Model Development, 2019, 12, 1139-1164.	3.6	168
13	The role of stratospheric ozone for Arctic-midlatitude linkages. Scientific Reports, 2019, 9, 7962.	3.3	28
14	S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal fo forecasts. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e00567.	8.1	48
15	Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communications, 2018, 9, 869.	12.8	205
16	More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes. Bulletin of the American Meteorological Society, 2018, 99, 49-60.	3.3	177
17	The different stratospheric influence on cold-extremes in Eurasia and North America. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	90
18	ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper. , 2018, n/a, .		25

#	Article	IF	CITATIONS
19	Amplified Arctic warming and midâ€latitude weather: new perspectives on emerging connections. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e474.	8.1	120
20	Winter 2015/16: A Turning Point in ENSO-Based Seasonal Forecasts. Oceanography, 2017, 30, 82-89.	1.0	20
21	Winter Precipitation Forecast in the European and Mediterranean Regions Using Cluster Analysis. Geophysical Research Letters, 2017, 44, 12,418.	4.0	22
22	An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophysical Research Letters, 2016, 43, 5287-5294.	4.0	64
23	Increasing Daily Precipitation Intensity Associated with Warmer Air Temperatures over Northern Eurasia. Journal of Climate, 2016, 29, 623-636.	3.2	29
24	Trends and variability in rainâ€onâ€snow events. Geophysical Research Letters, 2015, 42, 7115-7122.	4.0	102
25	Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophysical Research Letters, 2015, 42, 2367-2377.	4.0	59
26	Linking Siberian Snow Cover to Precursors of Stratospheric Variability. Journal of Climate, 2014, 27, 5422-5432.	3.2	85
27	Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 2014, 7, 627-637.	12.9	1,729
28	Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophysical Research Letters, 2014, 41, 2941-2947.	4.0	63
29	A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environmental Research Letters, 2013, 8, 014052.	5.2	24
30	Discrimination of Solid from Liquid Precipitation over Northern Eurasia Using Surface Atmospheric Conditions*. Journal of Hydrometeorology, 2013, 14, 1345-1355.	1.9	46
31	A look at the date of snowmelt and correlations with the Arctic Oscillation. Annals of Glaciology, 2013, 54, 196-204.	1.4	11
32	Warm Arctic, Cold Continents: A Common Pattern Related to Arctic Sea Ice Melt, Snow Advance, and Extreme Winter Weather. Oceanography, 2013, 26, .	1.0	95
33	Seasonal Predictability of Wintertime Precipitation in Europe Using the Snow Advance Index. Journal of Climate, 2012, 25, 4023-4028.	3.2	29
34	Passive microwave remote sensing of the historic February 2010 snowstorms in the Middle Atlantic region of the USA. Hydrological Processes, 2012, 26, 3459-3471.	2.6	14
35	The Role of Linear Interference in Northern Annular Mode Variability Associated with Eurasian Snow Cover Extent. Journal of Climate, 2011, 24, 6185-6202.	3.2	58
36	A new index for more accurate winter predictions. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	95

#	Article	IF	CITATIONS
37	Tropospheric Precursors and Stratospheric Warmings. Journal of Climate, 2011, 24, 6562-6572.	3.2	110
38	A Diagnostic Comparison of Alaskan and Siberian Strong Anticyclones. Journal of Climate, 2011, 24, 2599-2611.	3.2	9
39	Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophysical Research Letters, 2010, 37, .	4.0	135
40	The Dynamical Response to Snow Cover Perturbations in a Large Ensemble of Atmospheric GCM Integrations. Journal of Climate, 2009, 22, 1208-1222.	3.2	113
41	Decadal Fluctuations in Planetary Wave Forcing Modulate Global Warming in Late Boreal Winter. Journal of Climate, 2009, 22, 4418-4426.	3.2	53
42	Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. Journal of Geophysical Research, 2008, 113, .	3.3	80
43	Improved Skill of Northern Hemisphere Winter Surface Temperature Predictions Based on Land–Atmosphere Fall Anomalies. Journal of Climate, 2007, 20, 4118-4132.	3.2	90
44	Stratosphere–Troposphere Coupling and Links with Eurasian Land Surface Variability. Journal of Climate, 2007, 20, 5335-5343.	3.2	280
45	Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies. Global and Planetary Change, 2007, 56, 359-370.	3.5	41
46	Comments on "The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings― Journal of Climate, 2005, 18, 2775-2777.	3.2	4
47	The Role of Boundary Conditions in AMIP-2 Simulations of the NAO. Journal of Climate, 2005, 18, 973-981.	3.2	23
48	The NAO, the AO, and Global Warming: How Closely Related?. Journal of Climate, 2005, 18, 4498-4513.	3.2	156
49	Sensitivity of atmospheric response to modeled snow anomaly characteristics. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	75
50	Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway. Journal of Climate, 2004, 17, 1176-1189.	3.2	26
51	Introducing sub-seasonal spatial and temporal resolution to winter climate prediction. Geophysical Research Letters, 2003, 30, 18-1-18-4.	4.0	31
52	The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophysical Research Letters, 2003, 30, .	4.0	70
53	Correction to "The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode― Geophysical Research Letters, 2003, 30,	4.0	1
54	Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophysical Research Letters, 2003, 30, .	4.0	50

#	Article	IF	CITATIONS
55	Modeled Northern Hemisphere Winter Climate Response to Realistic Siberian Snow Anomalies. Journal of Climate, 2003, 16, 3917-3931.	3.2	136
56	A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophysical Research Letters, 2002, 29, 51-1-51-4.	4.0	64
57	A Large-Ensemble Model Study of the Wintertime AO–NAO and the Role of Interannual Snow Perturbations. Journal of Climate, 2002, 15, 3488-3499.	3.2	82
58	A Test for Annular Modes. Journal of Climate, 2002, 15, 2537-2546.	3.2	20
59	The role of the Siberian high in northern hemisphere climate variability. Geophysical Research Letters, 2001, 28, 299-302.	4.0	200
60	Evolution of Atmospheric Response to Early-Season Eurasian Snow Cover Anomalies. Monthly Weather Review, 2001, 129, 2746-2760.	1.4	94
61	The influence of snow cover on northern hemisphere climate variability. Atmosphere - Ocean, 2001, 39, 35-53.	1.6	98
62	Eurasian snow cover variability and northern hemisphere climate predictability. Geophysical Research Letters, 1999, 26, 345-348.	4.0	323
63	Case Studies of African Wave Disturbances in Gridded Analyses. Monthly Weather Review, 1997, 125, 2520-2530.	1.4	12
64	Snow Cover and Snow Mass Intercomparisons of General Circulation Models and Remotely Sensed Datasets. Journal of Climate, 1996, 9, 409-426.	3.2	143
65	Snow-mass intercomparisons in the boreal forests from general circulation models and remotely sensed data sets. Polar Record, 1996, 32, 199-208.	0.8	4
66	Snow cover and climate. Weather, 1994, 49, 150-156.	0.7	117
67	The Effect of Snow Cover on the Climate. Journal of Climate, 1991, 4, 689-706.	3.2	275