Shih-Yuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578360/publications.pdf

Version: 2024-02-01

279798 254184 1,924 54 23 43 citations h-index g-index papers 56 56 56 2172 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Unraveling the active sites of Cs-promoted Ru \hat{I}^3 -Al2O3 catalysts for ammonia synthesis. Applied Catalysis B: Environmental, 2022, 310, 121269.	20.2	12
2	Integrated CO2 capture and selective conversion to syngas using transition-metal-free Na/Al2O3 dual-function material. Journal of CO2 Utilization, 2022, 60, 102049.	6.8	21
3	Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO ₄ Photoanode. ACS Sustainable Chemistry and Engineering, 2022, 10, 7586-7594.	6.7	24
4	A super-growth carbon nanotubes-supported, Cs-promoted Ru catalyst for 0.1–8ÂMPaG ammonia synthesis. Journal of Catalysis, 2022, 413, 623-635.	6.2	8
5	Direct and continuous conversion of flue gas CO2 into green fuels using dual function materials in a circulating fluidized bed system. Chemical Engineering Journal, 2022, 450, 138055.	12.7	21
6	Enhanced Activity of Integrated CO ₂ Capture and Reduction to CH ₄ under Pressurized Conditions toward Atmospheric CO ₂ Utilization. ACS Sustainable Chemistry and Engineering, 2021, 9, 3452-3463.	6.7	66
7	NaBr-Assisted Photoelectrochemical and Photochemical Integrated Process for Isomerization of Maleate Esters to Fumarate Esters. ACS Sustainable Chemistry and Engineering, 2021, 9, 6886-6893.	6.7	5
8	Tuning the porosity of sulfur-resistant Pd-Pt/MCM-41 bimetallic catalysts for partial hydrogenation of soybean oil-derived biodiesel. Fuel, 2021, 298, 120658.	6.4	15
9	Effect of Pd Precursor Salts on the Chemical State, Particle Size, and Performance of Activated Carbon-Supported Pd Catalysts for the Selective Hydrogenation of Palm Biodiesel. International Journal of Molecular Sciences, 2021, 22, 1256.	4.1	5
10	Efficient simultaneous esterification/transesterification of non-edible Jatropha oil for biodiesel fuel production by template-free synthesized nanoporous titanosilicates. Catalysis Today, 2020, 356, 56-63.	4.4	8
11	Preparation of MCM-41-supported Pd–Pt catalysts with enhanced activity and sulfur resistance for partial hydrogenation of soybean oil-derived biodiesel fuel. Applied Catalysis A: General, 2020, 590, 117351.	4.3	16
12	X-ray absorption spectroscopy of Ba- and Cs-promoted Ru/mesoporous carbon catalysts for long-term ammonia synthesis under intermittent operation conditions. Sustainable Energy and Fuels, 2020, 4, 832-842.	4.9	12
13	Well-ordered Cs–Ru/@SBA-15 nanocomposite materials for low pressure ammonia synthesis. Sustainable Energy and Fuels, 2020, 4, 5802-5811.	4.9	9
14	Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. Applied Catalysis A: General, 2020, 602, 117707.	4.3	20
15	Effect of Pd particle size on activity and cis-trans selectivity in partial hydrogenation of soybean oil-derived FAMEs over Pd/SiO2 catalysts. Fuel Processing Technology, 2020, 203, 106393.	7.2	19
16	Profiling and catalytic upgrading of commercial palm oil-derived biodiesel fuels for high-blend fuels. Catalysis Today, 2019, 332, 122-131.	4.4	15
17	Mild Ammonia Synthesis over Ba-Promoted Ru/MPC Catalysts: Effects of the Ba/Ru Ratio and the Mesoporous Structure. Catalysts, 2019, 9, 480.	3.5	19
18	Energy Efficient and Intermittently Variable Ammonia Synthesis over Mesoporous Carbon-Supported Cs-Ru Nanocatalysts. Catalysts, 2019, 9, 406.	3.5	14

#	Article	IF	CITATIONS
19	Hydrotreating of Jatropha-derived Bio-oil over Mesoporous Sulfide Catalysts to Produce Drop-in Transportation Fuels. Catalysts, 2019, 9, 392.	3.5	11
20	A Mesoporous Carbonâ€Supported and Csâ€promoted Ru Catalyst with Enhanced Activity and Stability for Sustainable Ammonia Synthesis. ChemCatChem, 2018, 10, 3411-3414.	3.7	24
21	Influence of silica sources on structural property and activity of Pd-supported on mesoporous MCM-41 synthesized with an aid of microwave heating for partial hydrogenation of soybean methyl esters. Applied Catalysis A: General, 2018, 563, 80-90.	4.3	16
22	Catalytic hydrogenation of soybean oil-derived fatty acid methyl esters over Pd supported on Zr-SBA-15 with various Zr loading levels for enhanced oxidative stability. Fuel Processing Technology, 2018, 179, 422-435.	7.2	32
23	Influence of Alkaline and Alkaline Earth Metal Promoters on the Catalytic Performance of Pd– <i>M</i> /SiO ₂ (<i>M</i> = Na, Ca, or Ba) Catalysts in the Partial Hydrogenation of Soybean Oil-Derived Biodiesel for Oxidative Stability Improvement. Energy & Samp; Fuels, 2018, 32, 9744-9755.	5.1	18
24	Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts. Catalysts, 2018, 8, 59.	3.5	16
25	Oxygenâ€Assisted Hydrogenation of Jatrophaâ€Oilâ€Derived Biodiesel Fuel over an Aluminaâ€Supported Palladium Catalyst To Produce Hydrotreated Fatty Acid Methyl Esters for Highâ€Blend Fuels. ChemCatChem, 2017, 9, 2633-2637.	3.7	8
26	Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO 2 adsorption. Microporous and Mesoporous Materials, 2017, 253, 18-28.	4.4	48
27	Upgrading of palm biodiesel fuel over supported palladium catalysts. Comptes Rendus Chimie, 2016, 19, 1166-1173.	0.5	21
28	Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: Synthesis and utilization of the P123 template as carbon source. Applied Catalysis B: Environmental, 2016, 181, 800-809.	20.2	30
29	Influences of the Support Property and Pd Loading on Activity of Mesoporous Silica-Supported Pd Catalysts in Partial Hydrogenation of Palm Biodiesel Fuel. Advanced Porous Materials, 2016, 4, 230-237.	0.3	11
30	A costâ€effective acid degumming process produces highâ€quality Jatropha oil in tropical monsoon climates. European Journal of Lipid Science and Technology, 2015, 117, 1079-1087.	1.5	10
31	Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids. Bioresource Technology, 2014, 157, 346-350.	9.6	38
32	Deoxygenation of guaiacol and woody tar over reduced catalysts. Applied Catalysis B: Environmental, 2014, 146, 237-243.	20.2	89
33	New Ti-incorporated MCM-36 as an efficient epoxidation catalyst prepared by pillaring MCM-22 layers with titanosilicate. Journal of Catalysis, 2014, 319, 247-257.	6.2	32
34	Transformation of non-edible vegetable oils into biodiesel fuels catalyzed by unconventional sulfonic acid-functionalized SBA-15. Applied Catalysis A: General, 2014, 485, 28-39.	4.3	22
35	Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Applied Catalysis B: Environmental, 2014, 148-149, 344-356.	20.2	70
36	Effect of combination sequence of precursors on the structural and catalytic properties of Ti–SBA-15. RSC Advances, 2013, 3, 12604.	3.6	7

#	Article	IF	CITATIONS
37	Production of high-quality biodiesel fuels from various vegetable oils over Ti-incorporated SBA-15 mesoporous silica. Catalysis Communications, 2013, 41, 136-139.	3.3	26
38	Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS. Catalysis Communications, 2013, 36, 1-4.	3.3	55
39	Pyrolyzer–GC/MS system-based analysis of the effects of zeolite catalysts on the fast pyrolysis of Jatropha husk. Applied Catalysis A: General, 2013, 456, 174-181.	4.3	56
40	Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings. Journal of Materials Chemistry, 2012, 22, 2233-2243.	6.7	64
41	Tuning pore diameter of platelet SBA-15 materials with short mesochannels for enzyme adsorption. Journal of Materials Chemistry, 2011, 21, 5693.	6.7	66
42	Sulfonic acid-functionalized platelet SBA-15 materials as efficient catalysts for biodiesel synthesis. Green Chemistry, 2011, 13, 2920.	9.0	80
43	Effect of calcination on the structure and catalytic activities of titanium incorporated SBA-15. Journal of Materials Chemistry, 2011, 21, 2255-2265.	6.7	52
44	Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15. Journal of Catalysis, 2010, 270, 196-205.	6.2	101
45	Applications of Amine-functionalized Mesoporous Silica in Fine Chemical Synthesis. Topics in Catalysis, 2009, 52, 681-687.	2.8	48
46	Enantioselective addition of diethylzinc to benzaldehyde over mesoporous SBA-15 functionalized with chiral proline derivatives. Applied Catalysis A: General, 2009, 359, 96-107.	4.3	19
47	Direct Preparation of Thermally Stable Sn-Incorporated SBA-15 Mesoporous Materials in the Self-Generated Acidic Environment. Journal of Physical Chemistry C, 2009, 113, 15226-15238.	3.1	29
48	A Facile Route to Synthesizing Functionalized Mesoporous SBA-15 Materials with Platelet Morphology and Short Mesochannels. Chemistry of Materials, 2008, 20, 3906-3916.	6.7	161
49	Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol. Chemistry of Materials, 2007, 19, 3041-3051.	6.7	58
50	Synthesis of Thermally Stable Zirconia-Based Mesoporous Materials via a Facile Post-treatment. Journal of Physical Chemistry B, 2006, 110, 11761-11771.	2.6	55
51	Preparation of SnO2 Nanocrystallines-incorporated Large Mesoporous Silica Materials in a Selfgenerated Acidic Environment. Studies in Surface Science and Catalysis, 2006, , 369-376.	1.5	3
52	Acid-Free synthesis of mesostructured silica materials in a triblock copolymer-based system. Studies in Surface Science and Catalysis, 2005, 156, 89-96.	1.5	6
53	Arenesulfonic acid functionalized mesoporous silica as a novel acid catalyst for the liquid phase Beckmann rearrangement of cyclohexanone oxime to É-caprolactam. Applied Catalysis A: General, 2005, 281, 47-54.	4.3	82
54	Synthesis of Zr-Incorporated SBA-15 Mesoporous Materials in a Self-generated Acidic Environment. Chemistry of Materials, 2004, 16, 4174-4180.	6.7	151