David J Morgan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9578220/david-j-morgan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,405 80 240 50 h-index g-index citations papers 6.54 256 10,342 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
240	Au-Pd Separation Enhances Bimetallic Catalysis of Alcohol Oxidation <i>Nature</i> , 2022 ,	50.4	11
239	Analysis induced reduction of a polyelectrolyte. <i>Results in Surfaces and Interfaces</i> , 2022 , 6, 100032	O	1
238	Definition of a new (Doniach-Sunjic-Shirley) peak shape for fitting asymmetric signals applied to reduced graphene oxide/graphene oxide XPS spectra. <i>Surface and Interface Analysis</i> , 2022 , 54, 67	1.5	5
237	Impact of the Experimental Parameters on Catalytic Activity When Preparing Polymer Protected Bimetallic Nanoparticle Catalysts on Activated Carbon <i>ACS Catalysis</i> , 2022 , 12, 4440-4454	13.1	0
236	Highly efficient catalytic production of oximes from ketones using in situ-generated HO <i>Science</i> , 2022 , 376, 615-620	33.3	6
235	The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. <i>Catalysts</i> , 2021 , 11, 1461	4	0
234	The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. <i>Catalysis Science and Technology</i> , 2021 , 11, 7866-7874	5.5	3
233	In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. <i>Chemical Engineering Journal</i> , 2021 , 430, 132976	14.7	9
232	Biofunctionalisation of gallium arsenide with neutravidin. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 2399-2399	9.3	O
231	Experimental and Theoretical Study of the Electronic Structures of Lanthanide Indium Perovskites LnInO. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6387-6400	3.8	3
230	Core-level reference spectra for bulk graphitic carbon nitride (g-C3N4). Surface Science Spectra, 2021 , 28, 014007	1.2	O
229	Comments on the XPS Analysis of Carbon Materials. <i>Journal of Carbon Research</i> , 2021 , 7, 51	3.3	19
228	The Influence of Reaction Conditions on the Oxidation of Cyclohexane via the In-Situ Production of H2O2. <i>Catalysis Letters</i> , 2021 , 151, 164-171	2.8	9
227	The interaction of CO with a copper(ii) chloride oxy-chlorination catalyst. <i>Faraday Discussions</i> , 2021 , 229, 318-340	3.6	
226	Continuous hydrothermal flow synthesis of S-functionalised carbon quantum dots for enhanced oil recovery. <i>Chemical Engineering Journal</i> , 2021 , 405, 126631	14.7	20
225	Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support. <i>Chemical Engineering Journal</i> , 2021 , 417, 127999	14.7	5
224	Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. <i>Green Chemistry</i> , 2021 , 23, 4170-4180	10	

(2020-2021)

223	Coordinately unsaturated O2clioclib2c sites promote the reactivity of Pt/TiO2 catalysts in the solvent-free oxidation of n-octanol. <i>Catalysis Science and Technology</i> , 2021 , 11, 4898-4910	5.5	4	
222	The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO hydrogenation. <i>Faraday Discussions</i> , 2021 , 230, 30-51	3.6	3	
221	Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. <i>Research on Chemical Intermediates</i> , 2021 , 47, 303-324	2.8	5	
220	The Selective Oxidation of Cyclohexane via In-situ H2O2 Production Over Supported Pd-based Catalysts. <i>Catalysis Letters</i> , 2021 , 151, 2762-2774	2.8	6	
219	A surface oxidised FeB catalyst for the liquid phase hydrogenation of CO2. <i>Catalysis Science and Technology</i> , 2021 , 11, 779-784	5.5	6	
218	Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for Onto Metal Ions Nanosensing. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2559-2569	8.3	21	
217	Controlling the Selectivity of Supported Ru Nanoparticles During Glycerol Hydrogenolysis: CD vs CD Cleavage. <i>ChemCatChem</i> , 2021 , 13, 1595-1606	5.2		
216	Enhanced Selective Oxidation of Benzyl Alcohol via In Situ H2O2 Production over Supported Pd-Based Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 2701-2714	13.1	26	
215	Pulsed laser polishing of selective laser melted aluminium alloy parts. <i>Applied Surface Science</i> , 2021 , 558, 149887	6.7	9	
214	Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. <i>Applied Surface Science Advances</i> , 2021 , 5, 100112	2.6	82	
213	Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. <i>Catalysis Communications</i> , 2021 , 161, 106358	3.2	1	
212	Towards a reliable assessment of charging effects during surface analysis: Accurate spectral shapes of ZrO2 and Pd/ZrO2 via X-ray Photoelectron Spectroscopy. <i>Applied Surface Science</i> , 2021 , 566, 150728	6.7	2	
211	Ambient Temperature CO Oxidation Using Palladium Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. <i>Catalysts</i> , 2020 , 10, 1223	4	1	
2 10	XPS guide: Charge neutralization and binding energy referencing for insulating samples. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 031204	2.9	52	
209	Dielectric Spectroscopy of Hydrogen-Treated Hexagonal Boron Nitride Ceramics. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1193-1202	4	2	
208	Glycerol Selective Oxidation to Lactic Acid over AuPt Nanoparticles; Enhancing Reaction Selectivity and Understanding by Support Modification. <i>ChemCatChem</i> , 2020 , 12, 3097-3107	5.2	9	
207	Practical guide for x-ray photoelectron spectroscopy: Applications to the study of catalysts. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 033204	2.9	9	
206	Ammonia Decomposition Enhancement by Cs-Promoted Fe/Al2O3 Catalysts. <i>Catalysis Letters</i> , 2020 , 150, 3369-3376	2.8	5	

205	K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. <i>Chemical Science</i> , 2020 , 11, 7040-7052	9.4	13
204	Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 4635-4644	5.5	15
203	Inhibiting the Dealkylation of Basic Arenes during n-Alkane Direct Aromatization Reactions and Understanding the C6 Ring Closure Mechanism. <i>ACS Catalysis</i> , 2020 , 10, 8428-8443	13.1	9
202	The direct synthesis of hydrogen peroxide from H2 and O2 using Pdta and Pdth catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 1925-1932	5.5	18
201	Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors <i>RSC Advances</i> , 2020 , 10, 8444-8452	3.7	6
200	Facile synthesis of precious-metal single-site catalysts using organic solvents. <i>Nature Chemistry</i> , 2020 , 12, 560-567	17.6	46
199	Enhanced visible-light-driven photocatalytic H2 production and Cr(VI) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. <i>Catalysis Science and Technology</i> , 2020 , 10, 2838-2854	5.5	24
198	Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063208	2.9	5
197	Cinnamyl Alcohol Oxidation Using Supported Bimetallic Aul Nanoparticles: An Optimization of Metal Ratio and Investigation of the Deactivation Mechanism Under Autoxidation Conditions. <i>Topics in Catalysis</i> , 2020 , 63, 99-112	2.3	4
196	Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3270-3	2 73	30
195	Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrOx Oxygen Evolution Catalysts. <i>ACS Applied Energy Materials</i> , 2020 , 3, 800-809	6.1	13
194	Boronic acids for functionalisation of commercial multi-layer graphitic material as an alternative to diazonium salts. <i>New Journal of Chemistry</i> , 2020 , 44, 19144-19154	3.6	3
193	The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. <i>Catalysis Science and Technology</i> , 2020 , 10, 8203-8212	5.5	1
192	GoldBalladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. <i>Catalysis Science and Technology</i> , 2020 , 10, 5935-5944	5.5	13
191	Influence of the Preparation Method of Ag-K/CeO2-ZrO2-Al2O3 Catalysts on Their Structure and Activity for the Simultaneous Removal of Soot and NOx. <i>Catalysts</i> , 2020 , 10, 294	4	5
190	CW EPR Investigation of Red-Emitting CaS:Eu Phosphors: Rationalization of Local Electronic Structure. <i>Advanced Optical Materials</i> , 2020 , 8, 2001241	8.1	1
189	Lowering the Operating Temperature of Perovskite Catalysts for N2O Decomposition through Control of Preparation Methods. <i>ACS Catalysis</i> , 2020 , 10, 5430-5442	13.1	11
188	Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. <i>Catalysis Science and Technology</i> , 2019 , 9, 5698-5711	5.5	30

(2019-2019)

187	Rapid Microwave-Assisted Polyol Synthesis of TiO2-Supported Ruthenium Catalysts for Levulinic Acid Hydrogenation. <i>Catalysts</i> , 2019 , 9, 748	4	3
186	Efficient Elimination of Chlorinated Organics on a Phosphoric Acid Modified CeO Catalyst: A Hydrolytic Destruction Route. <i>Environmental Science & Environmental Science & Env</i>	10.3	48
185	The hydrogenation of levulinic acid to Evalerolactone over Cu Z rO2 catalysts prepared by a pH-gradient methodology. <i>Journal of Energy Chemistry</i> , 2019 , 36, 15-24	12	19
184	Ceria Z irconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. <i>Catalysts</i> , 2019 , 9, 475	4	21
183	The Direct Synthesis of H2O2 and Selective Oxidation of Methane to Methanol Using HZSM-5 Supported AuPd Catalysts. <i>Catalysis Letters</i> , 2019 , 149, 3066-3075	2.8	16
182	Enhanced Activity and Stability of Gold/Ceria-Titania for the Low-Temperature Water-Gas Shift Reaction. <i>Frontiers in Chemistry</i> , 2019 , 7, 443	5	8
181	Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol. <i>Dalton Transactions</i> , 2019 , 48, 8791-8802	4.3	15
180	Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds. <i>Applied Catalysis B: Environmental</i> , 2019 , 253, 331-340	21.8	25
179	Benzyl alcohol oxidation with Pd-Zn/TiO: computational and experimental studies. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 367-378	7.1	16
178	Superconducting Diamond on Silicon Nitride for Device Applications. <i>Scientific Reports</i> , 2019 , 9, 2911	4.9	15
177	The Direct Synthesis of H2O2 Using TS-1 Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680	5.2	30
176	Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. <i>New Journal of Chemistry</i> , 2019 , 43, 13985-13997	3.6	9
175	Direct Synthesis of Hydrogen Peroxide over Au P d Supported Nanoparticles under Ambient Conditions. <i>Industrial & Direct Synthesis (Conditions)</i> 12623-12631	3.9	33
174	Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. <i>Nanoscale Advances</i> , 2019 , 1, 2840-2846	5.1	16
173	Impact of Nanoparticle-Support Interactions in CoO/AlO Catalysts for the Preferential Oxidation of Carbon Monoxide. <i>ACS Catalysis</i> , 2019 , 9, 7166-7178	13.1	33
172	Recent advances in dual mode charge compensation for XPS analysis. <i>Surface and Interface Analysis</i> , 2019 , 51, 925-933	1.5	21
171	Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 40826-40834	9.5	31
170	Preformed Au colloidal nanoparticles immobilised on NiO as highly efficient heterogeneous catalysts for reduction of 4-nitrophenol to 4-aminophenol. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103381	6.8	9

169	In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides. <i>Dalton Transactions</i> , 2019 , 48, 17874-17886	4.3	8
168	Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. <i>Nature Catalysis</i> , 2019 , 2, 873-881	36.5	91
167	Fabrication and characterization of Ru-doped LiCuFe2O4 nanoparticles and their capacitive and resistive humidity sensor applications. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 474, 563-569) ^{2.8}	17
166	Effectiveness of Green Additives vs Poly(acrylic acid) in Inhibiting Calcium Sulfate Dihydrate Crystallization. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1561-1569	3.9	23
165	Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. <i>Catalysis Today</i> , 2019 , 333, 154-160	5.3	5
164	Imaging XPS for industrial applications. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2019 , 231, 109-117	1.7	17
163	Microwave Permittivity of Trace sp Carbon Impurities in Sub-Micron Diamond Powders. <i>ACS Omega</i> , 2018 , 3, 2183-2192	3.9	5
162	xNi¶Cu¶rO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone 2018 , 4, 12-23		5
161	The deposition of metal nanoparticles on carbon surfaces: the role of specific functional groups. <i>Faraday Discussions</i> , 2018 , 208, 455-470	3.6	15
160	Selective Hydrogenation of Levulinic Acid Using Ru/C Catalysts Prepared by Sol-Immobilisation. <i>Topics in Catalysis</i> , 2018 , 61, 833-843	2.3	15
159	Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. <i>ACS Catalysis</i> , 2018 , 8, 2567-2576	13.1	68
158	Cinnamaldehyde hydrogenation using Au P d catalysts prepared by sol immobilisation. <i>Catalysis Science and Technology</i> , 2018 , 8, 1677-1685	5.5	29
157	Oxidative Carboxylation of 1-Decene to 1,2-Decylene Carbonate. <i>Topics in Catalysis</i> , 2018 , 61, 509-518	2.3	8
156	Redox agent enhanced chemical mechanical polishing of thin film diamond. <i>Carbon</i> , 2018 , 130, 25-30	10.4	21
155	Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 451-462	21.8	31
154	One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles. <i>Faraday Discussions</i> , 2018 , 208, 409-425	3.6	10
153	Sacrificial Carbon Strategy toward Enhancement of Slurry Methanation Activity and Stability over Ni-Zr/SiO2 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4798-4806	3.9	11
152	Elucidating the Role of CO2 in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 3454-3468	13.1	52

(2017-2018)

151	How and why do countries differ in their governance and financing-related administrative expenditure in health care? An analysis of OECD countries by health care system typology. <i>International Journal of Health Planning and Management</i> , 2018 , 33, e263-e278	2.2	12
150	Investigating the Influence of Fe Speciation on NO Decomposition Over Fe-ZSM-5 Catalysts. <i>Topics in Catalysis</i> , 2018 , 61, 1983-1992	2.3	13
149	Core-level spectra of powdered tungsten disulfide, WS2. Surface Science Spectra, 2018, 25, 014002	1.2	15
148	Cinnamyl alcohol oxidation using supported bimetallic Au P d nanoparticles: an investigation of autoxidation and catalysis. <i>Catalysis Science and Technology</i> , 2018 , 8, 2987-2997	5.5	13
147	Practical Three-Minute Synthesis of Acid-Coated Fluorescent Carbon Dots with Tuneable Core Structure. <i>Scientific Reports</i> , 2018 , 8, 12234	4.9	31
146	Initial Oxygen Incorporation in the Prismatic Surfaces of Troilite FeS. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12810-12818	3.8	13
145	Improving the Selectivity of Photocatalytic NOx Abatement through Improved O2 Reduction Pathways Using Ti0.909W0.091O2Nx Semiconductor Nanoparticles: From Characterization to Photocatalytic Performance. <i>ACS Catalysis</i> , 2018 , 8, 6927-6938	13.1	13
144	Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. <i>Catalysts</i> , 2018 , 8, 623	4	7
143	Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. <i>Catalysis Science and Technology</i> , 2018 , 8, 5848-5857	5.5	18
142	Continuous hydrothermal flow synthesis of graphene quantum dots. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 949-958	4.9	17
141	Production of Metal-Free Diamond Nanoparticles. ACS Omega, 2018, 3, 16099-16104	3.9	7
140	Oxygenate formation over K/EMo2C catalysts in the Fischer Tropsch synthesis. <i>Catalysis Science and Technology</i> , 2018 , 8, 3806-3817	5.5	9
139	The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 1166-1173	6.8	29
138	The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. <i>Surface and Interface Analysis</i> , 2017 , 49, 794-799	1.5	146
137	Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. <i>RSC Advances</i> , 2017 , 7, 14716-14720	3.7	34
136	Selective Calixarene-Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres, and Scrolls. <i>Chemistry - A European Journal</i> , 2017 , 23, 8128-8133	4.8	24
135	Deactivation Behavior of Supported Gold Palladium Nanoalloy Catalysts during the Selective Oxidation of Benzyl Alcohol in a Micropacked Bed Reactor. <i>Industrial & mp; Engineering Chemistry Research</i> , 2017 , 56, 12984-12993	3.9	7
134	Highly Active Gold and GoldPalladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. <i>ChemCatChem</i> , 2017 , 9, 2914-2918	5.2	14

133	An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. <i>Journal of Chemical Technology and Biotechnology</i> , 2017 , 92, 2246-2253	3.5	12
132	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. <i>Catalysis Science and Technology</i> , 2017 , 7, 1928-1936	5.5	9
131	Identification of single-site gold catalysis in acetylene hydrochlorination. <i>Science</i> , 2017 , 355, 1399-1403	33.3	285
130	The Effects of Inorganic Additives on the Nucleation and Growth Kinetics of Calcium Sulfate Dihydrate Crystals. <i>Crystal Growth and Design</i> , 2017 , 17, 582-589	3.5	38
129	Cluster cleaned HOPG by XPS. Surface Science Spectra, 2017, 24, 024003	1.2	6
128	Co3O4 morphology in the preferential oxidation of CO. Catalysis Science and Technology, 2017, 7, 4806-	48 9 7	25
127	Activation and Deactivation of Gold/Ceria-Zirconia in the Low-Temperature Water-Gas Shift Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16037-16041	16.4	36
126	Activation and Deactivation of Gold/Cerialirconia in the Low-Temperature Water Gas Shift Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 16253-16257	3.6	4
125	Aqueous Au-Pd colloids catalyze selective CH oxidation to CHOH with O under mild conditions. <i>Science</i> , 2017 , 358, 223-227	33-3	299
124	Deactivation studies of bimetallic AuPd nanoparticles supported on MgO during selective aerobic oxidation of alcohols. <i>Applied Catalysis A: General</i> , 2017 , 546, 58-66	5.1	17
123	A hybrid strain and thermal energy harvester based on an infra-red sensitive Er modified poly(vinylidene fluoride) ferroelectret structure. <i>Scientific Reports</i> , 2017 , 7, 16703	4.9	24
122	Metallic antimony (Sb) by XPS. Surface Science Spectra, 2017 , 24, 024004	1.2	8
121	An investigation of CuReInO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy and Fuels, 2017, 1, 1437-1445	5.8	5
120	Identification of the catalytically active component of CullrD catalyst for the hydrogenation of levulinic acid to Evalerolactone. <i>Green Chemistry</i> , 2017 , 19, 225-236	10	53
119	The Low-Temperature Oxidation of Propane by using H2O2 and Fe/ZSM-5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. <i>ChemCatChem</i> , 2017 , 9, 642-650	5.2	11
118	PdZn catalysts for CO hydrogenation to methanol using chemical vapour impregnation (CVI). <i>Faraday Discussions</i> , 2017 , 197, 309-324	3.6	58
117	X-ray induced reduction of rhenium salts and supported oxide catalysts. <i>Surface and Interface Analysis</i> , 2017 , 49, 223-226	1.5	7
116	Base-free oxidation of glucose to gluconic acid using supported gold catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 107-117	5.5	42

(2016-2016)

115	Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. <i>ACS Catalysis</i> , 2016 , 6, 6623-6633	13.1	59
114	Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. <i>Nature Communications</i> , 2016 , 7, 12855	17.4	13
113	Three-minute synthesis of sp nanocrystalline carbon dots as non-toxic fluorescent platforms for intracellular delivery. <i>Nanoscale</i> , 2016 , 8, 18630-18634	7.7	40
112	Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 106002	1.8	50
111	Oxygen Reduction at Carbon-Supported Lanthanides: The Role of the B-Site. <i>ChemElectroChem</i> , 2016 , 3, 283-291	4.3	51
110	Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. <i>Catalysis Science and Technology</i> , 2016 , 6, 5144-5153	5.5	56
109	Stable amorphous georgeite as a precursor to a high-activity catalyst. <i>Nature</i> , 2016 , 531, 83-7	50.4	100
108	Palladium-tin catalysts for the direct synthesis of HDDwith high selectivity. <i>Science</i> , 2016 , 351, 965-8	33.3	314
107	Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 3410-3418	5.5	42
106	Fischer Tropsch synthesis using cobalt based carbon catalysts. <i>Catalysis Today</i> , 2016 , 275, 35-39	5.3	27
105	PdRu/TiO2 catalyst Ian active and selective catalyst for furfural hydrogenation. <i>Catalysis Science and Technology</i> , 2016 , 6, 234-242	5.5	85
104	Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells. <i>PLoS ONE</i> , 2016 , 11, e0144780	3.7	11
103	Surface Analysis: X-Ray Photoelectron Spectroscopy 2016 ,		
102	Spectroscopic Investigation of Titania-Supported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. <i>ChemCatChem</i> , 2016 , 8, 2136-2145	5.2	11
101	Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 19038-46	9.5	68
100	Explicit Detection of the Mechanism of Platinum Nanoparticle Shape Control by Polyvinylpyrrolidone. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 7532-7542	3.8	29
99	Fischer Tropsch Synthesis using promoted cobalt-based catalysts. <i>Catalysis Today</i> , 2016 , 272, 74-79	5.3	11
98	Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. <i>Journal of Catalysis</i> , 2016 , 343, 133-146	7.3	248

97	An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 17259-64	3.6	14
96	The conversion of levulinic acid into Evalerolactone using Cu Z rO2 catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 6022-6030	5.5	28
95	Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. <i>Applied Catalysis A: General</i> , 2016 , 518, 213-220	5.1	14
94	Hydrogenolysis of Glycerol to Monoalcohols over Supported Mo and W Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5752-5760	8.3	29
93	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. <i>Catalysis Today</i> , 2015 , 254, 12-20	5.3	23
92	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. <i>ACS Catalysis</i> , 2015 , 5, 5047-5059	13.1	72
91	Low temperature catalytic partial oxidation of ethane to oxygenates by Felland CullSM-5 in a continuous flow reactor. <i>Journal of Catalysis</i> , 2015 , 330, 84-92	7.3	21
90	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. <i>Applied Catalysis A: General</i> , 2015 , 504, 62-73	5.1	21
89	Electronic and surface properties of Ga-doped In2O3 ceramics. <i>Applied Surface Science</i> , 2015 , 349, 970-	9 82 7	25
88	Liquid phase oxidation of cyclohexane using bimetallic Au B d/MgO catalysts. <i>Applied Catalysis A: General</i> , 2015 , 504, 373-380	5.1	33
87	Molecular modeling as a predictive tool for the development of solid dispersions. <i>Molecular Pharmaceutics</i> , 2015 , 12, 1040-9	5.6	38
86	The effects of particle grinding on the burnout and surface chemistry of coals in a drop tube furnace. <i>Fuel</i> , 2015 , 160, 413-423	7.1	18
85	The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 23236-44	3.6	12
84	Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. <i>ChemSusChem</i> , 2015 , 8, 473-80	8.3	25
83	Greener synthesis of dimethyl carbonate using a novel ceriallirconia oxide/graphene nanocomposite catalyst. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 353-362	21.8	89
82	Direct synthesis of hydrogen peroxide using Au B d supported and ion-exchanged heteropolyacids precipitated with various metal ions. <i>Catalysis Today</i> , 2015 , 248, 10-17	5.3	26
81	Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. <i>Catalysis Science and Technology</i> , 2015 , 5, 217-227	5.5	15
80	An Investigation of the Effect of the Addition of Tin to 5 %Pd/TiO2 for the Hydrogenation of Furfuryl Alcohol. <i>ChemCatChem</i> , 2015 , 7, 2122-2129	5.2	21

79	Resolving ruthenium: XPS studies of common ruthenium materials. <i>Surface and Interface Analysis</i> , 2015 , 47, 1072-1079	1.5	425
78	Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature. <i>Catalysts</i> , 2015 , 5, 690-70	022	7
77	Growth of epitaxial Pt1-xPbx alloys by surface limited redox replacement and study of their adsorption properties. <i>Langmuir</i> , 2015 , 31, 10904-12	4	17
76	The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 1465-1471	6.7	36
75	Methyl Formate Formation from Methanol Oxidation Using Supported GoldPalladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644	13.1	69
74	Greener synthesis of propylene carbonate using graphene-inorganic nanocomposite catalysts. <i>Catalysis Today</i> , 2015 , 256, 347-357	5.3	27
73	Photocatalytic hydrogen production by reforming of methanol using Au/TiO2, Ag/TiO2 and Au-Ag/TiO2 catalysts 2015 , 1, 35-43		13
72	Rutile TiO2 P d Photocatalysts for Hydrogen Gas Production from Methanol Reforming. <i>Topics in Catalysis</i> , 2015 , 58, 70-76	2.3	17
71	The functionalisation of graphite surfaces with nitric acid: Identification of functional groups and their effects on gold deposition. <i>Journal of Catalysis</i> , 2015 , 323, 10-18	7.3	50
70	Characterization of Au3+ Species in Au/C Catalysts for the Hydrochlorination Reaction of Acetylene. <i>Catalysis Letters</i> , 2014 , 144, 1-8	2.8	68
69	The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2381-4	16.4	86
68	The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. <i>Chemistry - A European Journal</i> , 2014 , 20, 1743-52	4.8	27
67	Novel cobalt zinc oxide Fischer Tropsch catalysts synthesised using supercritical anti-solvent precipitation. <i>Catalysis Science and Technology</i> , 2014 , 4, 1970-1978	5.5	26
66	Molybdenum Oxide on Fe2O3 CoreBhell Catalysts: Probing the Nature of the Structural Motifs Responsible for Methanol Oxidation Catalysis. <i>ACS Catalysis</i> , 2014 , 4, 243-250	13.1	73
65	The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26155-26161	3.8	49
64	Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. <i>Catalysis Science and Technology</i> , 2014 , 4, 2280-2286	5.5	49
63	Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. <i>Catalysis Science and Technology</i> , 2014 , 4, 3120-3128	5.5	34
62	Study of the magneticAlq3 interface in organic spin-valves. <i>Applied Surface Science</i> , 2014 , 313, 850-857	6.7	10

61	Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS. <i>Applied Surface Science</i> , 2014 , 320, 664-669	6.7	20
60	Oxygen reduction reaction activity on Pt{111} surface alloys. <i>ChemPhysChem</i> , 2014 , 15, 2044-51	3.2	10
59	Base-free oxidation of glycerol using titania-supported trimetallic AuPdPt nanoparticles. <i>ChemSusChem</i> , 2014 , 7, 1326-34	8.3	61
58	Characterisation and electrocatalytic activity of PtNi alloys on Pt{1 1 1} electrodes formed using different thermal treatments. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 716, 106-111	4.1	13
57	Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. <i>Electrochimica Acta</i> , 2014 , 128, 3-9	6.7	37
56	A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. <i>RSC Advances</i> , 2014 , 4, 14858	3.7	82
55	The Direct Synthesis of Hydrogen Peroxide Using Platinum-Promoted Gold P alladium Catalysts. <i>Angewandte Chemie</i> , 2014 , 126, 2413-2416	3.6	11
54	Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26638-44	3.6	14
53	Base-free glucose oxidation using air with supported gold catalysts. <i>Green Chemistry</i> , 2014 , 16, 3132-31	4:1 0	59
52	Spectroscopic and atomic force studies of the functionalisation of carbon surfaces: new insights into the role of the surface topography and specific chemical states. <i>Faraday Discussions</i> , 2014 , 173, 257	372	16
51	Selective deposition of palladium onto supported nickel (bimetallic catalysts for the hydrogenation of crotonaldehyde. <i>Catalysis Science and Technology</i> , 2013 , 3, 2746	5.5	17
50	Mechanism of synergistic interactions and its influence on drug release from extended release matrices manufactured using binary mixtures of polyethylene oxide and sodium carboxymethylcellulose. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 104, 174-80	6	24
49	Au-Pd nanoalloys supported on Mg-Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. <i>Dalton Transactions</i> , 2013 , 42, 14498-508	4.3	83
48	Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2910	5.5	9
47	A facile route to model catalysts: the synthesis of Au@Pd core-shell nanoparticles on FeDI (0001). <i>Nanoscale</i> , 2013 , 5, 9018-22	7.7	10
46	Band gap engineering of In2O3 by alloying with Tl2O3. <i>Applied Physics Letters</i> , 2013 , 103, 262108	3.4	18
45	Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. <i>Journal of Catalysis</i> , 2013 , 297, 128-136	7.3	123
44	Study of polymer thagnetic electrode interfaces using XPS. Applied Surface Science, 2013, 265, 570-577	6.7	6

(2011-2013)

43	Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. <i>Catalysis Science and Technology</i> , 2013 , 3, 128-134	5.5	87
42	Effect of heat treatment on Au P d catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 308-317	5.5	55
41	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. <i>Catalysis Today</i> , 2013 , 203, 139-145	5.3	51
40	Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. <i>Applied Catalysis B: Environmental</i> , 2013 , 132-133, 98-106	21.8	62
39	Control of the selectivity in multi-functional group molecules using supported goldpalladium nanoparticles. <i>Green Chemistry</i> , 2013 , 15, 1244	10	10
38	The effect of acid treatment on the surface chemistry and topography of graphite. <i>Carbon</i> , 2013 , 61, 124-133	10.4	29
37	Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. <i>International Journal of Pharmaceutics</i> , 2013 , 443, 199-208	6.5	115
36	Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21577-21582	3.8	6
35	Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported goldflopper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. <i>Catalysis Today</i> , 2012 , 195, 120-126	5.3	106
34	Oxidative Esterification of Homologous 1,3-Propanediols. <i>Catalysis Letters</i> , 2012 , 142, 1114-1120	2.8	15
33	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. <i>Catalysis Science and Technology</i> , 2012 , 2, 97-104	5.5	28
32	Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. <i>ACS Nano</i> , 2012 , 6, 6600-13	16.7	114
31	Modified zeolite ZSM-5 for the methanol to aromatics reaction. <i>Catalysis Science and Technology</i> , 2012 , 2, 105-112	5.5	149
30	Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. Small, 2012, 8, 89	-9 ₁ 7 ₁	40
29	Uniform aligned bioconjugation of biomolecule motifs for integration within microfabricated microfluidic devices. <i>Analytical Biochemistry</i> , 2012 , 424, 195-205	3.1	1
28	Visible light photocatalystsN-doped TiO2 by solgel, enhanced with surface bound silver nanoparticle islands. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11854		52
27	CO bond cleavage on supported nano-gold during low temperature oxidation. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2528-38	3.6	26
26	Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology. <i>Advanced Energy Materials</i> , 2011 , 1, 230-240	21.8	190

25	Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. <i>Langmuir</i> , 2011 , 27, 1853-8	4	19
24	Unprecedented Structural Sensitivity toward Average Terrace Width: Nafion Adsorption at Pt{hkl} Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17020-17027	3.8	33
23	New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. <i>Ultrasonics Sonochemistry</i> , 2011 , 18, 226-30	8.9	203
22	Effects of the nanostructuring of gold films upon their thermal stability. ACS Nano, 2010, 4, 2228-32	16.7	1
21	Influence of thermal treatment on nanostructured gold model catalysts. <i>Langmuir</i> , 2010 , 26, 16261-6	4	11
20	Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability. <i>Materials Science and Engineering C</i> , 2009 , 29, 2514-2524	8.3	32
19	Photocatalytic activities of N-doped nano-titanias and titanium nitride. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 2343-2353	6	67
18	Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films. Journal of Photochemistry and Photobiology A: Chemistry, 2009 , 207, 244-253	4.7	100
17	Synthesis and characterization of doped nano-sized cerialirconia solid solutions. <i>Applied Catalysis B: Environmental</i> , 2009 , 90, 405-415	21.8	61
16	Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5142-53	3.6	119
15	White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8747		99
14	Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1921-30	3.6	130
13	Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. <i>Catalysis Today</i> , 2007 , 122, 317-324	5.3	141
12	The reactive chemisorption of alkyl iodides at Cu(110) and Ag(111) surfaces: a combined STM and XPS study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9556-66	3.4	28
11	Chemisorption and reaction of phenyl iodide at Cu(1 1 0) surfaces: a combined STM and XPS study. <i>Surface Science</i> , 2004 , 555, L138-L142	1.8	11
10	Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. <i>Catalysis Science and Technology</i> ,	5.5	2
9	Investigating the Effects of Surface Adsorbates on Gold and Palladium Deposition on Carbon. <i>Topics in Catalysis</i> ,1	2.3	

LIST OF PUBLICATIONS

7	Effect of the Preparation Method of LaSrCoFeOx Perovskites on the Activity of N2O Decomposition. <i>Catalysis Letters</i> ,1	2.8	1
6	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. <i>Nature Catalysis</i> ,	36.5	13
5	Oleophobic composite films based on multi-layer graphitic scaffolding. New Journal of Chemistry,	3.6	1
4	Structure Sensitivity and Hydration Effects in Pt/TiO2 and Pt/TiO2BiO2 Catalysts for NO and Propane Oxidation. <i>Topics in Catalysis</i> ,1	2.3	
3	Advanced XPS characterization: XPS-based multi-technique analyses for comprehensive understanding of functional materials. <i>Materials Chemistry Frontiers</i> ,	7.8	5
2	The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. <i>Catalysis Science and Technology</i> ,	5.5	1
1	The Direct Synthesis of Hydrogen Peroxide Over Supported Pd-Based Catalysts: An Investigation into the Role of the Support and Secondary Metal Modifiers. <i>Catalysis Letters</i> ,1	2.8	2