Jalal Jalilian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578113/publications.pdf

Version: 2024-02-01

		1040056	996975	
17	329	9	15	
papers	citations	h-index	g-index	
18	18	18	359	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crops Research, 2012, 127, 26-34.	5.1	69
2	Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management, 2021, 244, 106544.	5.6	65
3	Antioxidant status and physiological responses of wheat (<i>Triticum aestivum</i> L.) to cycocel application and bio fertilizers under water limitation condition. Journal of Plant Interactions, 2016, 11, 130-137.	2.1	46
4	Effects of Arbuscular Mycorrhizal Fungi on Seed and Protein Yield under Waterâ€Deficit Stress in Mung Bean. Agronomy Journal, 2013, 105, 79-84.	1.8	45
5	Intercropping patterns and different farming systems affect the yield and yield components of safflower and bitter vetch. Journal of Plant Interactions, 2017, 12, 92-99.	2.1	21
6	Growth, physiological status, and yield of salt-stressed wheat (<i>Triticum aestivum</i> L.) plants affected by biofertilizer and cycocel applications. Arid Land Research and Management, 2018, 32, 71-90.	1.6	19
7	Effects of biofertilizers and cycocel on some physiological and biochemical traits of wheat (Triticum) Tj ETQq1 1 C).784314 r 2.6	gBT Overloo
8	Isabgol (<i>Plantago ovata</i>) and lentil (<i>Lens culinaris</i>) intercrop responses to arbuscular mycorrhizal fungi inoculation. Biological Agriculture and Horticulture, 2021, 37, 125-140.	1.0	15
9	Some Morpho-Physiological Characteristics of Mung Bean Mycorrhizal Plants under Different Irrigation Regimes in Field Condition. Journal of Plant Nutrition, 2015, 38, 1754-1767.	1.9	10
10	Effects of Superabsorbent and Irrigation Regime on Seedling Growth Characteristics of Barley (Hordeum Vulgare L.). Cercetari Agronomice in Moldova, 2013, 46, 11-19.	0.3	5
11	Fodder value and physiological aspects of rainfed smooth vetch affected by biofertilizers and supplementary irrigation in an agri-silviculture system. Agroforestry Systems, 2022, 96, 221-232.	2.0	5
12	How do AMF-inoculation and supplemental irrigation affect the productivity of rainfed yellow sweet clover in agrisilviculture systems?. Archives of Agronomy and Soil Science, 2019, 65, 2043-2058.	2.6	4
13	Yield-related biochemical response of understory mycorrhizal yellow sweet clover (<i>Melilotus) Tj ETQq1 1 0.784</i>	1314 rgBT 2.6	/Overlock 10 4
14	Do Fertilizers and Irrigation Disruption Change Some Physiological Traits of Safflower?. Journal of Plant Growth Regulation, 2019, 38, 1439-1448.	5.1	3
15	How do Biological and Chemical Phosphorus Change the Yield (Quantity and Quality) of <i>Calendula officinalis</i> in Water-Limited Condition?. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 105-120.	1.9	3
16	Safflower Growth as Affected by Cropping Intensity and Micronutrient Foliar Spray. Journal of Crop Improvement, 2016, 30, 259-273.	1.7	0
17	Impacts of high and low-input farming systems on the quality change of Safflower oil while intercropped with bitter vetch. Tarim Bilimleri Dergisi, 0, , .	0.4	0