Ana I Bourbon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT - Food Science and Technology, 2022, 154, 112748.	2.5	10
2	Hyaluronic acid–amphotericin B nanocomplexes: a promising anti-leishmanial drug delivery system. Biomaterials Science, 2022, 10, 1952-1967.	2.6	1
3	Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods, 2021, 10, 1512.	1.9	13
4	The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 2021, 19, 384.	2.2	11
5	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	1.7	11
6	Edible films and coatings as carriers of nano and microencapsulated ingredients. , 2021, , 211-273.		2
7	Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia) Tj ETQq1 1 Food Science and Technology, 2020, 57, 650-662.	0.784314 1.4	rgBT /Over 15
8	Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food and Function, 2020, 11, 305-317.	2.1	19
9	Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocolloids, 2020, 101, 105550.	5.6	16
10	Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials, 2020, 10, 2356.	1.9	26
11	Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food and Function, 2020, 11, 8331-8341.	2.1	8
12	Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food and Function, 2020, 11, 1966-1981.	2.1	34
13	Nanoparticles of lactoferrin for encapsulation of food ingredients. , 2019, , 147-168.		6
14	Protein-Based Nanostructures for Food Applications. Gels, 2019, 5, 9.	2.1	33
15	Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on â€~Manchego' cheese. Food Hydrocolloids, 2019, 89, 272-282.	5.6	43
16	Nanolaminated Systems Production by Layer-by-Layer Technique. , 2019, , 75-101.		0
17	Protein-Based Structures for Food Applications: From Macro to Nanoscale. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	42
18	Characterization of Particle Properties in Nanoemulsions. , 2018, , 519-546.	_	6

Ana I Bourbon

#	Article	IF	CITATIONS
19	In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 2018, 84, 267-275.	5.6	22
20	Advances in Food Nanotechnology. , 2017, , 11-38.		17
21	Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 2016, 9, 1874-1884.	2.6	65
22	Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 2016, 90, 16-24.	2.9	34
23	Development of an immobilization system for in situ micronutrients release. Food Research International, 2016, 90, 121-132.	2.9	8
24	InÂvitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocolloids, 2016, 58, 89-97.	5.6	50
25	Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, 2016, 180, 110-119.	2.7	106
26	Influence of chitosan coating on protein-based nanohydrogels properties and inÂvitro gastric digestibility. Food Hydrocolloids, 2016, 60, 109-118.	5.6	48
27	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	3.1	41
28	Physical and mass transfer properties of electrospun É›-polycaprolactone nanofiber membranes. Process Biochemistry, 2015, 50, 885-892.	1.8	6
29	Development and characterization of lactoferrin-GMP nanohydrogels: Evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 2015, 48, 292-300.	5.6	58
30	Hollow chitosan/alginate nanocapsules for bioactive compound delivery. International Journal of Biological Macromolecules, 2015, 79, 95-102.	3.6	59
31	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	5.1	159
32	Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Materials Science and Engineering C, 2014, 42, 219-226.	3.8	35
33	Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on †Coalho' Cheese Shelf Life. Food and Bioprocess Technology, 2014, 7, 1088-1098.	2.6	81
34	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	3.1	99
35	Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 2014, 71, 141-146.	3.6	195
36	Biocomposite Films Based on κ-Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. Food and Bioprocess Technology, 2013, 6, 2081-2092.	2.6	75

Ana I Bourbon

#	Article	IF	CITATIONS
37	Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 2013, 33, 199-206.	5.6	122
38	Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices – Diffusion of protein-based compounds from chitosan films. Journal of Food Engineering, 2013, 116, 633-638.	2.7	21
39	Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 2012, 16, 227-232.	2.7	70
40	Interactions between κ-carrageenan and chitosan in nanolayered coatings—Structural and transport properties. Carbohydrate Polymers, 2012, 87, 1081-1090.	5.1	70
41	Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 2012, 27, 287-292.	5.6	324
42	Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 2012, 29, 280-289.	5.6	271
43	Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated Oregano essential oil. Journal of Food Engineering, 2012, 110, 190-199.	2.7	67
44	Galactomannans use in the development of edible films/coatings for food applications. Trends in Food Science and Technology, 2011, 22, 662-671.	7.8	182
45	Rheological characterization of κ-carrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohydrate Polymers, 2011, 83, 392-399.	5.1	69
46	Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 2011, 106, 111-118.	2.7	137
47	Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum.	5.6	139