Qinmin Pan

List of Publications by Citations

Source: https://exaly.com/author-pdf/9577846/qinmin-pan-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72
papers

3,861
citations

4,236
ext. papers

35
h-index

8.2
avg, IF

61
g-index

L-index

#	Paper	IF	Citations
72	Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. <i>ACS Nano</i> , 2014 , 8, 1402-9	16.7	293
71	Versatile fabrication of ultralight magnetic foams and application for oil-water separation. <i>ACS Nano</i> , 2013 , 7, 6875-83	16.7	292
70	Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 2851-2855	6.7	214
69	Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field. <i>ACS Applied Materials & Distriction of the Property of th</i>	9.5	186
68	Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes. <i>Applied Surface Science</i> , 2008 , 254, 6002-6006	6.7	183
67	Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 15541-15548	9.5	124
66	Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. <i>Journal of Power Sources</i> , 2007 , 167, 206-211	8.9	115
65	Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. <i>ACS Applied Materials & Distributed & </i>	9.5	108
64	3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. <i>Journal of Alloys and Compounds</i> , 2015 , 620, 31-37	5.7	107
63	Bioinspired aquatic microrobot capable of walking on water surface like a water strider. <i>ACS Applied Materials & District Aces</i> , 2011 , 3, 2630-6	9.5	106
62	Flower-like ZnONiOII films with high reversible capacity and rate capability for lithium-ion batteries. <i>Electrochimica Acta</i> , 2010 , 55, 5780-5785	6.7	98
61	A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors. Journal of Materials Chemistry A, 2016 , 4, 17732-17739	13	97
60	An Omni-Healable Supercapacitor Integrated in Dynamically Cross-Linked Polymer Networks. <i>Advanced Functional Materials</i> , 2017 , 27, 1700690	15.6	93
59	Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3420		87
58	3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 17837-43	9.5	83
57	Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. <i>Electrochimica Acta</i> , 2007 , 53, 951-956	6.7	81
56	MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, A139		77

(2015-2014)

55	Highly compressible and stretchable superhydrophobic coating inspired by bio-adhesion of marine mussels. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11365-11371	13	72
54	Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2009 , 476, 408-413	5.7	68
53	Fabrication of superhydrophobic surfaces on interconnected Cu(OH)2nanowires via solution-immersion. <i>Nanotechnology</i> , 2007 , 18, 355605	3.4	66
52	Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite. <i>ACS Applied Materials & District Acros</i> (1988) Applied Materials & District (1988	9.5	65
51	Fabrication and electrochemical behavior of flower-like ZnOlloOll nanowall arrays as anodes for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9207-9213	5.7	57
50	Rationally Designed Self-Healing Hydrogel Electrolyte toward a Smart and Sustainable Supercapacitor. <i>ACS Applied Materials & Empty Selfondor</i> , 19, 27745-27753	9.5	56
49	Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2007 , 17, 329-334		55
48	Why superhydrophobicity is crucial for a water-jumping microrobot? Experimental and theoretical investigations. <i>ACS Applied Materials & Interfaces</i> , 2012 , 4, 3706-11	9.5	53
47	Cloud point-dispersive Bolid phase extraction of hydrophobic organic compounds onto highly hydrophobic core-shell FeD@C magnetic nanoparticles. <i>Journal of Chromatography A</i> , 2012 , 1251, 33-39	94.5	53
46	A superhydrophobic aerogel with robust self-healability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4424	- 44 31	51
45	Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries. <i>Electrochemistry Communications</i> , 2007 , 9, 754-7	′ <i>&</i> ó¹	51
44	A Water Strider-Like Model with Large and Stable Loading Capacity Fabricated from Superhydrophobic Copper Foils. <i>ACS Applied Materials & English States</i> , 2010, 2, 2026-2030	9.5	49
43	PbO@C coreBhell nanocomposites as an anode material of lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 917-920	5.1	49
42	An all-in-one self-healable capacitor with superior performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2500-2506	13	45
41	Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 1597-1602	2.6	43
40	Controlled fabrication of flowerlike ZnOHe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7544		39
39	Self-Healable Hydrogel Electrolyte toward High-Performance and Reliable Quasi-Solid-State Zn-MnO Batteries. <i>ACS Applied Materials & Emp; Interfaces</i> , 2019 , 11, 38762-38770	9.5	37
38	Embedding MnO nanoparticles in robust carbon microsheets for excellent lithium storage properties. <i>Journal of Power Sources</i> , 2015 , 299, 265-272	8.9	37

37	Mussel-inspired healing of a strong and stiff polymer. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6667-6	6743	34
36	Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. <i>Journal of Solid State Electrochemistry</i> , 2009 , 13, 1591-1597	2.6	33
35	Improving the cycleability of Si anodes by covalently grafting with 4-carboxyphenyl groups. <i>Electrochemistry Communications</i> , 2010 , 12, 479-482	5.1	33
34	Enhancing Lithium Storage Capacity of ZnO Anodes Through Ni[sub 3]ZnC[sub 0.7] Incorporation. Journal of the Electrochemical Society, 2010 , 157, A55	3.9	29
33	Fast Healable Superhydrophobic Material. ACS Applied Materials & amp; Interfaces, 2019, 11, 29388-293	95 9.5	28
32	Improving the lithium storage properties of Fe2O3@C nanoparticles by superoleophilic and superhydrophobic polysiloxane coatings. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15894		28
31	Facile Fabrication of Cu[sub 2]OluO Nanocomposite Films for Lithium-Ion Batteries via Chemical Bath Deposition. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A50		27
30	Facile Fabrication of Robust Ice-Phobic Polyurethane Sponges. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500219	4.6	26
29	Unraveling the Origins of the Unreactive Corelln Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. <i>ACS Energy Letters</i> , 2019 , 4, 2007-2012	20.1	25
28	Stabilizing Li Metal Anodes through a Novel Self-Healing Strategy. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11097-11104	8.3	24
27	Novel modified graphite as anode material for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1833-1838		22
26	Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles. <i>Mikrochimica Acta</i> , 2013 , 180, 775-782	5.8	20
25	An Omni-healable and Tailorable Aqueous Lithium-Ion Battery. <i>ChemElectroChem</i> , 2018 , 5, 637-642	4.3	19
24	Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries. <i>Electrochimica Acta</i> , 2008 , 54, 197-202	6.7	18
23	Surface-engineered vanadium nitride nanosheets for an imaging-guided photothermal/photodynamic platform of cancer treatment. <i>Nanoscale</i> , 2019 , 11, 1968-1977	7.7	17
22	Remote Manipulation of a Microdroplet in Water by Near-Infrared Laser. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 1273-9	9.5	17
21	Hydrophobization of Metal Surfaces by Covalent Grafting of Aromatic Layer via Aryldiazonium Chemistry and Their Application in the Fabrication of Superhydrophobic Surfaces. <i>Chemistry Letters</i> , 2007 , 36, 1312-1313	1.7	15
20	Water-Cooked Cu[sub 2]O Films for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A452	3.9	14

(2019-2020)

19	Intelligent Icephobic Surface toward Self-Deicing Capability. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 792-799	8.3	13
18	Vertical force acting on partly submerged spindly cylinders. <i>AIP Advances</i> , 2014 , 4, 047118	1.5	11
17	A smart "strider" can float on both water and oils. ACS Applied Materials & amp; Interfaces, 2014, 6, 2135	5963	11
16	Mussel-Inspired Self-Healing of Ultralight Magnetic Frameworks. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 7905-7911	8.3	10
15	A multi-functional binder for high loading sulfur cathode. <i>Journal of Energy Chemistry</i> , 2020 , 46, 99-104	12	10
14	Sodium Hyaluronate: A Versatile Polysaccharide toward Intrinsically Self-Healable Energy-Storage Devices. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 3136-3141	9.5	10
13	Realizing High-Performance Sulfur Cathodes through a Self-Healing and Confining Strategy. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6919-6926	6.1	10
12	Fast and highly reversible switching of wettability through macroscopic shape change. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11288-11295	13	10
11	Chemical Anchoring of Ag Nanoparticles to Si Surfaces and Its Application in Lithium Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, A180		9
10	Unraveling the advances of trace doping engineering for potassium ion battery anodes via tomography. <i>Journal of Energy Chemistry</i> , 2021 , 58, 355-363	12	9
9	Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries. <i>Journal of Power Sources</i> , 2008 , 178, 379-386	8.9	8
8	Controlled Movement of a Smart Miniature Submarine at Various Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 24899-24904	9.5	8
7	A miniature surface tension-driven robot mimicking the water-surface locomotion of water strider 2015 ,		6
6	A water walking robot inspired by water strider 2012 ,		6
5	Bubble-induced transport of oil droplets in water. Chemical Communications, 2014, 50, 13817-20	5.8	4
4	Stabilizing Lithium Metal Anodes by a Self-Healable and Li-Regulating Interlayer. <i>ACS Applied Materials & Materia</i>	9.5	2
3	Ionic conducting polymer encapsulated graphite as the anode material for lithium ion batteries. <i>Polymers for Advanced Technologies</i> , 2003 , 14, 216-220	3.2	1
2	High Stable Sulfur Cathode with Self-Healable and Physical Confining Polydimethylsiloxane Interlayer. <i>ChemElectroChem</i> , 2019 , 6, 5705-5711	4.3	1

Effectively Improving Capacitive Performance of Three-Dimensional Iron(III) Oxide Nanotube Arrays by Rationally Filling Mesopores with Polypyrrole. *ChemElectroChem*, **2016**, 3, 1407-1414

4.3