Ping-Zhan Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577795/publications.pdf

Version: 2024-02-01

394421 434195 1,421 119 19 31 citations h-index g-index papers 121 121 121 1443 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon, 2003, 41, 247-251.	10.3	113
2	Unconventional exchange bias in oxide-coated manganese nanoparticles. Applied Physics Letters, 2005, 87, 133122.	3.3	74
3	Magnetic-entropy change in Mn/sub 1.1/Fe/sub 0.9/P/sub 1-x/Ge/sub x/ compounds. IEEE Transactions on Magnetics, 2005, 41, 2778-2780.	2.1	59
4	Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3–xGex. Journal of Alloys and Compounds, 2005, 396, 6-9.	5.5	57
5	Large coercivity and small exchange bias in Mn3O4 / MnO nanoparticles. Solid State Communications, 2007, 142, 723-726.	1.9	49
6	Al2O3 coated α-Fe solid solution nanocapsules prepared by arc discharge. Scripta Materialia, 2003, 48, 593-598.	5.2	41
7	Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles. Physica B: Condensed Matter, 2005, 358, 332-338.	2.7	41
8	Title is missing!. Journal of Materials Science, 2003, 38, 689-692.	3.7	39
9	Morphological selections and dynamical evolutions of buckling patterns in SiAlNx films: From straight-sided to telephone cord or bubble structures. Acta Materialia, 2014, 64, 41-53.	7.9	38
10	Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge. Materials Research Bulletin, 2005, 40, 29-37.	5.2	36
11	Influence of annealing on the microwave-absorption properties of Ni/TiO2 nanocomposites. Journal of Alloys and Compounds, 2013, 577, 533-537.	5.5	25
12	In situ Observation of Phase Transformation in MnAl(C) Magnetic Materials. Materials, 2017, 10, 1016.	2.9	25
13	Structure and magnetic properties of Gd nanoparticles and carbon coated Gd/GdC2 nanocapsules. Journal of Applied Physics, 2003, 94, 6779-6784.	2.5	24
14	Effects of Ga-doping on the microstructure and magnetic properties of MnBi alloys. Journal of Alloys and Compounds, 2018, 769, 813-816.	5.5	23
15	Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. Journal of Materials Science, 2005, 40, 4287-4291.	3.7	22
16	Structure and anisotropic compensation of Tb1â^'xPrx(Fe0.4Co0.55B0.05)1.93 (0â‰魔â‰車) magnetostrictive alloys. Journal of Alloys and Compounds, 2009, 474, 9-13.	5 . 5	22
17	Synthesis, structure and exchange bias in Cr2O3/CrO2/Cr2O5 particles. Thin Solid Films, 2011, 519, 8423-8425.	1.8	22
18	Synthesis, structure and magnetic properties of Fe–Gd nanocapsules coated with B2O3/H3BO3 and Fe3BO5+GdBO3. Physica B: Condensed Matter, 2004, 353, 1-8.	2.7	21

#	Article	IF	CITATIONS
19	Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.97P0.03. Applied Physics Letters, 2012, 100, .	3.3	21
20	Anomalous exchange bias in Gd/Cr bilayer and Cr/Gd/Cr trilayers. Journal of Alloys and Compounds, 2008, 458, 1-4.	5.5	20
21	A novel method for measuring the phase transformation temperature and enhanced coercivity in cold-rolled MnAlC (x†=†0†"5) alloys. Journal of Magnetism and Magnetic Materials, 2018, 451, 540-545.	2.3	20
22	Magnetic-field-enhanced reactive synthesis of MnBi from Mn nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 476, 243-247.	2.3	20
23	Spatial and kinetic evolutions of telephone cord buckles. Surface and Coatings Technology, 2013, 228, 258-265.	4.8	18
24	Structural Stabilizing Effect of Zn Substitution on MnAl and Its Magnetic Properties. Open Journal of Microphysics, 2011, 01, 19-22.	0.6	18
25	Structural, microstructural and temperature dependent magnetic properties of Mg–Ni doped CoCr2O4 ceramics. Ceramics International, 2022, 48, 11654-11661.	4.8	18
26	Large Scale Synthesis of Nitrogen Doped TiO2 Nanoparticles by Reactive Plasma. Materials Letters, 2012, 68, 161-163.	2.6	17
27	Giant low-field magnetostriction of epoxy/TbxDy1â^'x(Fe0.8Co0.2)2 composites (0.20â€‰â‰æ€‰xâ€‰â‰æ€ Physics Letters, 2013, 103, .	% ₉ 0,40). A	Applied
28	Effect of Particle Size on the Hysteretic Behavior and Magnetocaloric Effect of La0.5Pr0.5Fe11.4Si1.6 Compound. Acta Metallurgica Sinica (English Letters), 2014, 27, 27-30.	2.9	16
29	High saturation magnetization FeB(C) nanocapsules. Scripta Materialia, 2007, 57, 265-268.	5.2	15
30	Spontaneous formation of hierarchical wrinkles in Cr films deposited on silicone oil drops with constrained edges. Physical Review E, 2013, 88, 042401.	2.1	14
31	Magnetostriction of TbxDy0.9â^'xNd0.1(Fe0.8Co0.2)1.93 compounds and their composites (0.20â©⅓2xâ©⅓20.6 Journal of Alloys and Compounds, 2014, 582, 583-587.	0). 5.5	14
32	Synthesis, structure and tribological performance of tungsten disulphide nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 443, 167-171.	5.6	13
33	Exchange bias in Cr/Gd multilayers with TC <tn. 2008,="" 463,="" 96-99.<="" alloys="" and="" compounds,="" journal="" of="" td=""><td>5.5</td><td>13</td></tn.>	5.5	13
34	Magnetoresistance and magnetostriction effects in bulk Dy-doped La2/3Sr1/3MnO3. Solid State Communications, 2009, 149, 243-246.	1.9	13
35	Structure and magnetic properties of Cr/Cr2O3/CrO2 microspheres prepared by spark erosion and oxidation under high pressure of oxygen. Materials Letters, 2013, 92, 213-215.	2.6	13
36	High magnetic-refrigeration performance of plate-shaped La0.5Pr0.5Fe11.4Si1.6 hydrides sintered in high-pressure H2 atmosphere. Applied Physics Letters, 2015, 106, .	3.3	13

#	Article	IF	Citations
37	Anisotropy compensation and high low-field magnetostriction of epoxy/Tb1â^'xHox(Fe0.8Co0.2)2 composites (0.60≤≶.0). Journal of Alloys and Compounds, 2011, 509, 8207-8210.	5.5	12
38	Microwave dielectric properties of La4Ti3O12 ceramics. Materials Letters, 2014, 118, 24-26.	2.6	12
39	Transitions from straight-sided to telephone cord buckles in SiAlNx films. Thin Solid Films, 2014, 550, 480-485.	1.8	12
40	Structure and Magnetic Properties of Cr2O3/CrO2Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen. Journal of Magnetics, 2015, 20, 211-214.	0.4	12
41	Synthesis, structure and magnetic properties of iron-doped tungsten oxide nanorods. Physica B: Condensed Matter, 2007, 392, 154-158.	2.7	11
42	The effect of Ni-substitution on the magnetic properties of Ni2MnGe Heusler alloys. Journal of Alloys and Compounds, 2008, 462, 1-3.	5.5	11
43	An experimental study of the influence of film edges and imperfections on buckling morphologies of quenched iron films. Thin Solid Films, 2011, 519, 7936-7939.	1.8	11
44	Stress relief patterns of Co films deposited on circular silicone oil substrates. Thin Solid Films, 2012, 520, 5683-5690.	1.8	10
45	Structure and magnetostriction of Tb0.4Nd0.6(Fe0.8Co0.2) \times alloys. Applied Physics A: Materials Science and Processing, 2014, 115, 1121-1125.	2.3	10
46	Composition anisotropy compensation and magnetostriction of Co-doped Laves compounds Tb 0.2 Dy 0.8a^x Pr x Fe 1.93 (0 ≤ ≤0.40). Solid State Communications, 2018, 275, 63-67.	1.9	10
47	The Influence of Mechanical Milling on the Structure and Magnetic Properties of Sm-Fe-N Powder Produced by the Reduction-Diffusion Process. Journal of Magnetics, 2011, 16, 104-107.	0.4	10
48	Magnetomechanical behavior of Tb0.2Dy0.8â^'xPrx(Fe0.8Co0.2)1.93/epoxy pseudo-1â€"3 particulate composites. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	9
49	High Hardness Nanocrystalline Invar Alloys Prepared from Fe-Ni Nanoparticles. Metals, 2018, 8, 28.	2.3	9
50	High-Pressure Synthesis of High Coercivity Bulk MnAl-C Magnets from Melt-Spun Ribbons. Journal of Electronic Materials, 2019, 48, 794-798.	2.2	9
51	Synthesis, structure and magnetic properties of DyAl2 nanoparticles. Journal of Alloys and Compounds, 2006, 413, 29-34.	5.5	8
52	Air stability and magnetic properties of GdN, TiN, and (Gd,Ti)N nanoparticles. Journal of Nanoparticle Research, 2008, 10, 53-58.	1.9	8
53	The High Nitrogen Pressure Synthesis of Manganese Nitride. Chinese Physics Letters, 2012, 29, 128101.	3.3	8
54	Large scale synthesis of FeS coated Fe nanoparticles as reusable magnetic photocatalysts. Frontiers of Materials Science, 2013, 7, 308-311.	2.2	8

#	Article	IF	CITATIONS
55	Magnetostriction of Laves Tb0.1Ho0.9â°'Pr (Fe0.8Co0.2)1.93 alloys. Materials Research Bulletin, 2016, 77, 122-125.	5.2	8
56	Composition anisotropy compensation and magnetoelastic properties of Mn-doped TbxHo1â^'xFe2 Laves compounds (0.08Ââ%ÂxÂâ%Â0.16). Journal of Alloys and Compounds, 2017, 725, 946-951.	5.5	8
57	Preparation and properties of dysprosium nanocapsules coated with boron, carbon, and dysprosium oxide. Materials Research Bulletin, 2004, 39, 1005-1012.	5.2	7
58	Coalescence behaviors of telephone cord buckles in SiAlNx films. Surface and Coatings Technology, 2013, 232, 884-890.	4.8	7
59	Enhanced magnetoelastic effect in Laves (Tb,Dy)Fe2 alloys with the joint introduction of Pr and Nd. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
60	Enhancing the magnetization of Mn4C by heating. Applied Physics Letters, 2018, 112, .	3.3	7
61	Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders. Bulletin of Materials Science, 2019, 42, 1.	1.7	7
62	High Coercivity in MnAl Disc Prepared by Severe Plastic Deformation. Physica Status Solidi (B): Basic Research, 2020, 257, 1900356.	1.5	7
63	Structure and Magnetic Properties of Cu Doped MnAl. Physical Science International Journal, 2014, 4, 536-541.	0.3	7
64	Synthesis, characterization and magnetic properties of Fe–Al nanopins. Physica B: Condensed Matter, 2005, 370, 131-136.	2.7	6
65	Controlled formation of straight-sided buckles in patterned Ta films on glass substrates. Materials Science & Scienc	5.6	6
66	Magnetic and magnetocaloric properties of MnO·98FeO·02P1-xAsx compounds. Journal of Alloys and Compounds, 2017, 690, 598-603.	5.5	6
67	Phase transformation and enhanced coercivity in B-N-doped MnAl nanocrystalline bulk alloys prepared by high pressure torsion. AIP Advances, 2020, 10, 015320.	1.3	6
68	High-Performance Anisotropic Nanocomposites with a Novel Core/shell Microstructure. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15558-15564.	8.0	6
69	Structure and magnetostrictive properties of melt-spun Pr(Fe0.4Co0.6)1.93 alloys. Journal of Magnetism and Magnetic Materials, 2009, 321, 4052-4056.	2.3	5
70	Structure and Magnetic Properties of Boron-oxide and Boron-nitride Coated Iron Nanocapsules. Journal of Materials Science and Technology, 2010, 26, 1051-1056.	10.7	5
71	Synthesis, structure and magnetic properties of ultra-high purity CrO 2 prepared under high O 2 -gas pressure. Solid State Sciences, 2017, 67, 72-75.	3.2	5
72	Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites. Journal of the Korean Physical Society, 2018, 73, 1703-1707.	0.7	5

#	Article	IF	CITATIONS
73	Large coercivity and exchange bias in Mn3O4 nanoparticles prepared by laser ablation method. Journal of Magnetism and Magnetic Materials, 2019, 489, 165481.	2.3	5
74	Structure and Magnetic Properties of Nanocrystalline MnAl-C Prepared by Solid-State Reaction and High-Pressure Compaction. Journal of Electronic Materials, 2019, 48, 1395-1399.	2.2	5
75	A Review of Ultrafine-Grained Magnetic Materials Prepared by Using High-Pressure Torsion Method. Materials, 2022, 15, 2129.	2.9	5
76	Investigation of time dependent effects in the magnetization processes of Y Sm1 \hat{a} °Co3Cu2 alloys. Journal of Alloys and Compounds, 2004, 379, 82-86.	5.5	4
77	LARGE COERCIVITY IN ANTIFERROMAGNETIC Mn2O3/ Mn5O8 AND MnO/Mn NANOPARTICLES. International Journal of Modern Physics B, 2009, 23, 3895-3901.	2.0	4
78	Structure and magnetostriction of Tb0.4Nd0.6(Fe0.8Co0.2)1.90 alloy prepared by solid-state synthesis. Rare Metals, 2012, 31, 547-551.	7.1	4
79	Magnetic properties of single-phase MnBi grown from MnBi49 melt. Journal of Applied Physics, 2014, 115, 17A752.	2.5	4
80	Synthesis and characterization of Co nanoparticles encapsulated in organics. Journal of Alloys and Compounds, 2014, 584, 222-224.	5. 5	4
81	Influence of High-Pressure Nitrogenation on the Structural, Magnetic and Magnetocaloric Properties of La0.5Pr0.5Fe11.4Si1.6. Acta Metallurgica Sinica (English Letters), 2015, 28, 1382-1386.	2.9	4
82	Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling. AIP Advances, 2018, 8, 056216.	1.3	4
83	Synthesis and magnetic properties of melt-spun high Pr-content magnetostrictive alloys. Physica B: Condensed Matter, 2009, 404, 2444-2448.	2.7	3
84	Transport and magnetic properties of bulk polycrystalline (YBa2Cu3O7)1â°'x(Nd0.7Sr0.3MnO3)x nanocomposites. Physica C: Superconductivity and Its Applications, 2009, 469, 102-105.	1.2	3
85	STRUCTURE AND MAGNETIC PROPERTIES OF MANGANESE OXIDE NANOPARTICLES PREPARED BY ARC SUBLIMATION. Modern Physics Letters B, 2010, 24, 3025-3032.	1.9	3
86	In situelectric properties of Ag films deposited on rough substrates. Philosophical Magazine Letters, 2013, 93, 18-26.	1.2	3
87	STRUCTURE AND PHOTOCATALYTIC PROPERTIES OF N -DOPED TiO _{2-x} FILMS PREPARED BY N -ION IMPLANTATION. Surface Review and Letters, 2013, 20, 1350059.	1.1	3
88	Microstructure and magnetostrictive properties of epoxy-bonded Tb _{1-x} Nd _x (Fe _{0.8} Co<td>ont2.@sub></td><td>0.2x/sub>)<s< td=""></s<></td>	ont 2. @sub>	0.2x/sub>) <s< td=""></s<>
89	Effect of B-doping on the structure and magnetocaloric properties of plate-shaped La0.6Pr0.4Fe11.4Si1.6Hx sintered in high-pressure H2 atmosphere. AIP Advances, 2017, 7, 056419.	1.3	3
90	Beating Thermal Deterioration of Magnetization with Mn4C and Exchange Bias in Mn–C Nanoparticles. Nanomaterials, 2018, 8, 1056.	4.1	3

#	Article	IF	CITATIONS
91	Structure and magnetic properties of L10-MnGa nanoparticles prepared using direct reactions between Mn nanoparticles and Ga. AIP Advances, 2018, 8, 056323.	1.3	3
92	X-ray powder diffraction data for Mn ₄ C. Powder Diffraction, 2019, 34, 196-197.	0.2	3
93	Magnetic properties of MnBi bulk magnets with NaCl and C addition. AIP Advances, 2019, 9, 115213.	1.3	3
94	Weak Ferromagnetism and Exchange Bias in Antiferromagnetic Cobalt Oxide Nanoparticles. Journal of Magnetics, 2018, 23, 487-490.	0.4	3
95	Structure and Magnetic Properties of MnAl/ \hat{l} ±-Fe Nano-Composite Powders Prepared by High-Energy Ball Milling. Advanced Materials Research, 2011, 287-290, 1492-1495.	0.3	2
96	Structural, magnetic and magnetostrictive properties of Laves-phase compounds TbxHo0.9â^'xNd0.1Fe1.93 (0Ââ‰ÂxÂâ‰Â0.40). Materials Chemistry and Physics, 2014, 148, 82-86.	4.0	2
97	Influence of High-Pressure Nitrogenation on the Structure, Magnetism and Microwave Absorption Properties of SmFe10Mo2. Acta Metallurgica Sinica (English Letters), 2015, 28, 781-786.	2.9	2
98	Magnetoelastic properties of epoxy resin based Tb _x Ho _{0.9â^'x} Nd _{0.1} (Fe _{0.8} Co _{0.2}) _{1.93} particulate composites. Materials Science-Poland, 2017, 35, 81-86.	1.0	2
99	Preparation of Sm-Fe-N by High-Pressure N2 Nitridation and Sm2Fe17 by a Diffusion Process. Journal of Electronic Materials, 2018, 47, 7472-7475.	2.2	2
100	Laser Ablation Synthesis, Structure, and Exchange Bias of Mn4C/MnO Powders. Journal of Electronic Materials, 2019, 48, 1436-1440.	2.2	2
101	Computational analysis of anomalous temperature dependence of magnetic properties in Mn4C compound. Journal of Magnetism and Magnetic Materials, 2021, 527, 167765.	2.3	2
102	Structure and magnetic properties of N-containing Pr–Fe–B alloys prepared by mechanical alloying. Journal of Magnetism and Magnetic Materials, 2004, 277, 153-158.	2.3	1
103	Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge. Physica B: Condensed Matter, 2005, 369, 215-220.	2.7	1
104	Structure and Magnetostriction of Tb _{0.7} Pr _{0.3} Fe _X Prepared by Solid-State Synthesis. Advanced Materials Research, 2012, 476-478, 1459-1462.	0.3	1
105	Effect of Transition Metal Ion Doping on the Photocatalytic Activities of TiO ₂ Synthesized by Sol-Gel Method. Advanced Materials Research, 0, 562-564, 260-264.	0.3	1
106	Overcoming Decomposition with Order-Reversed Quenching Obtained by Flash Melting. Chinese Physics Letters, 2013, 30, 078101.	3.3	1
107	Redefine the Kilogram in Terms of the Carbon-12 Atom and an Exact Value of the Avogadro Constant. Mapan - Journal of Metrology Society of India, 2015, 30, 1-5.	1.5	1
108	Phase Transformation of Micrometer-Sized Mn–Al–C. IEEE Transactions on Magnetics, 2018, 54, 1-3.	2.1	1

#	Article	IF	CITATIONS
109	Structure and Magnetic Properties of MnBi Nanoparticles Prepared by Laser Ablation and Arc-Discharge Method. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	1
110	Structural, Magnetic, and Magnetoelastic Properties of High Nd-Content Laves Alloys Prepared by Solid-State Synthesis. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3609-3613.	1.8	1
111	Magnetic entropy change in Mn/sub 1.1/Fe/sub 0.9/P/sub 1-x/Ge/sub x/ compounds. , 2005, , .		O
112	Structure and Magnetostrictive Properties of Tb _{0.2} Pr _{0.8} 0.4Co _{0.6} <td>&gt3)<s</td> <td>ulo>1.9&l</td>	& gt3)<s	u lo >1.9&l
113	Structure and Magnetic Properties of Sm-Fe-N Prepared by Nitriding High Purity Sm ₂ Fe ₁₇ Grown from Sm-Rich Melt. Advanced Materials Research, 2011, 287-290, 875-878.	0.3	0
114	Magnetostriction of Epoxy-Bonded Tb _{0.22} Dy _{0.48} Pr _{0.3} (Fe _{0.9} B _{0.1}) _{1.93} <td>>0.3</td> <td>0</td>	>0.3	0
115	Crystal Structures of New Compounds Na _{0.5} Sm _{4.5} Ti ₄ O _{150.5} Eu _{4.5} Ti ₄ O ₁₅	0.3	0
116	Size Segregation and Super-Domain Mediated by Dipolar Interactions in 3-D Iron Nanoparticle Assemblies. Chinese Physics Letters, 2012, 29, 047502.	3.3	0
117	Magnetic, magnetocaloric and transport properties of CrAs0.3Sb0.7. Journal of Magnetism and Magnetic Materials, 2013, 334, 1-4.	2.3	0
118	Microwave Dielectric Properties of Eu ₄ Ti ₃ O ₁₂ Ceramics via Sol-Gel Method. Advanced Materials Research, 2013, 750-752, 1020-1023.	0.3	0
119	The Effect of Mn/Al Substitution on the Structural Stability and Magnetic Properties of Mnâ,fAlC. Journal of Magnetics, 2019, 24, 123-127.	0.4	0