
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577661/publications.pdf Version: 2024-02-01

LOSE | HUESO

#	Article	IF	CITATIONS
1	Recent developments of iron-based nanosystems as enzyme-mimicking surrogates of interest in tumor microenvironment treatment. , 2022, , 237-265.		0
2	Engineered Nanostructured Photocatalysts for Cancer Therapy. Catalysts, 2022, 12, 167.	1.6	10
3	Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection. Nanomaterials, 2022, 12, 755.	1.9	9
4	Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. Journal of Colloid and Interface Science, 2022, 617, 704-717.	5.0	23
5	Unravelling the key factors in the chlorine-promoted epoxidation of ethylene over a silver–copper oxide nanocatalyst. Nanoscale, 2022, 14, 7332-7340.	2.8	3
6	Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper–iron nanoparticles working under chemically relevant tumour conditions. Chemical Science, 2022, 13, 8307-8320.	3.7	9
7	Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane. Catalysis Today, 2021, 362, 97-103.	2.2	21
8	LED-driven controlled deposition of Ni onto TiO2 for visible-light expanded conversion of carbon dioxide into C1–C2 alkanes. Nanoscale Advances, 2021, 3, 3788-3798.	2.2	6
9	LED-driven continuous flow carbon dioxide hydrogenation on a nickel-based catalyst. Catalysis Today, 2020, 355, 678-684.	2.2	13
10	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	5.4	25
11	Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization. Applied Catalysis B: Environmental, 2020, 263, 118360.	10.8	47
12	Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures. Catalysts, 2020, 10, 1459.	1.6	15
13	Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation. Catalysts, 2020, 10, 333.	1.6	31
14	Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane. Chemical Engineering Journal, 2020, 393, 124746.	6.6	42
15	Non-oxidative methane conversion in microwave-assisted structured reactors. Chemical Engineering Journal, 2019, 377, 119764.	6.6	85
16	Overcoming Stability Problems in Microwave-Assisted Heterogeneous Catalytic Processes Affected by Catalyst Coking. Catalysts, 2019, 9, 867.	1.6	31
17	Green Synthesis of a Cu/SiO2 Catalyst for Efficient H2-SCR of NO. Applied Sciences (Switzerland), 2019, 9, 4075.	1.3	16
18	Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors. Science Advances, 2019, 5, eaau9000.	4.7	66

#	Article	IF	CITATIONS
19	Triangular and Prismâ€Shaped Goldâ€Zinc Oxide Plasmonic Nanostructures: In situ Reduction, Assembly, and Fullâ€Range Photocatalytic Performance. European Journal of Inorganic Chemistry, 2019, 2019, 3228-3234.	1.0	4
20	Upconverting Carbon Nanodots from Ethylenediaminetetraacetic Acid (EDTA) as Nearâ€Infrared Activated Phototheranostic Agents. Chemistry - A European Journal, 2019, 25, 5539-5546.	1.7	15
21	Silver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of N-Hexane in the Visible-NIR Range. Materials, 2019, 12, 3858.	1.3	11
22	Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Catalysis Science and Technology, 2019, 9, 5927-5942.	2.1	36
23	High-radiance LED-driven fluidized bed photoreactor for the complete oxidation of n-hexane in air. Chemical Engineering Journal, 2019, 358, 1363-1370.	6.6	24
24	Laser-Assisted Production of Carbon-Encapsulated Pt-Co Alloy Nanoparticles for Preferential Oxidation of Carbon Monoxide. Frontiers in Chemistry, 2018, 6, 487.	1.8	19
25	In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of p-Nitrophenol. Catalysts, 2018, 8, 354.	1.6	10
26	Natural polysaccharides and microfluidics: A win–win combination towards the green and continuous production of long-term stable silver nanoparticles. Journal of Environmental Chemical Engineering, 2018, 6, 5069-5078.	3.3	5
27	Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates. Chemical Science, 2018, 9, 7766-7778.	3.7	12
28	In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chemical Engineering Journal, 2017, 316, 50-60.	6.6	50
29	In-situ preparation of ultra-small Pt nanoparticles within rod-shaped mesoporous silica particles: 3-D tomography and catalytic oxidation of n-hexane. Catalysis Communications, 2017, 100, 93-97.	1.6	20
30	Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: Application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light. Applied Catalysis B: Environmental, 2017, 218, 68-79.	10.8	39
31	Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 2017, 117, 437-446.	5.4	91
32	Pumping Metallic Nanoparticles with Spatial Precision within Magnetic Mesoporous Platforms: 3D Characterization and Catalytic Application. ACS Applied Materials & Interfaces, 2017, 9, 41529-41536.	4.0	12
33	Nitrogenâ€Induced Transformation of Vitaminâ€C into Multifunctional Upâ€converting Carbon Nanodots in the Visible–NIR Range. Chemistry - A European Journal, 2017, 23, 3067-3073.	1.7	15
34	Titania-coated gold nanorods with expanded photocatalytic response. Enzyme-like glucose oxidation under near-infrared illumination. Nanoscale, 2017, 9, 1787-1792.	2.8	45
35	Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale, 2017, 9, 631-636.	2.8	113
36	Plasmonics Devoted to Photocatalytic Applications in Liquid, Gas, and Biological Environments. , 2017,		1

3

۰.

#	Article	IF	CITATIONS
37	Innentitelbild: A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of Ethylene (Angew. Chem. 37/2016). Angewandte Chemie, 2016, 128, 11082-11082.	1.6	0
38	Nitrogen-doped luminescent carbon nanodots for optimal photo-generation of hydroxyl radicals and visible-light expanded photo-catalysis. Diamond and Related Materials, 2016, 65, 176-182.	1.8	37
39	A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorineâ€Promoted Epoxidation of Ethylene. Angewandte Chemie, 2016, 128, 11324-11327.	1.6	4
40	A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorineâ€Promoted Epoxidation of Ethylene. Angewandte Chemie - International Edition, 2016, 55, 11158-11161.	7.2	29
41	Ethylene epoxidation in microwave heated structured reactors. Catalysis Today, 2016, 273, 99-105.	2.2	28
42	Continuous-Mode Laser Ablation at the Solid–Liquid Interface of Pelletized Low-Cost Materials for the Production of Luminescent Silicon Carbide Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 2158-2165.	1.5	16
43	Spontaneous formation of Au–Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Nanoscale, 2015, 7, 10152-10161.	2.8	37
44	Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation. Nanoscale, 2015, 7, 8566-8573.	2.8	10
45	Feroxyhyte nanoflakes coupled to up-converting carbon nanodots: a highly active, magnetically recoverable, Fenton-like photocatalyst in the visible-NIR range. Chemical Communications, 2015, 51, 16625-16628.	2.2	31
46	Efficient and facile tuning of Vulcan XC72 with ultra-small Pt nanoparticles for electrocatalytic applications. RSC Advances, 2015, 5, 90691-90697.	1.7	20
47	Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study. Materials Chemistry and Physics, 2015, 151, 29-33.	2.0	8
48	VOCs abatement using thick eggshell Pt/SBA-15 pellets with hierarchical porosity. Catalysis Today, 2014, 227, 179-186.	2.2	35
49	Gold-coated halloysite nanotubes as tunable plasmonic platforms. New Journal of Chemistry, 2014, 38, 2037.	1.4	41
50	Evaluation of gold-decorated halloysite nanotubes as plasmonic photocatalysts. Catalysis Communications, 2014, 56, 115-118.	1.6	27
51	Green Synthesis of Chitosan‣tabilized Copper Nanoparticles. European Journal of Inorganic Chemistry, 2013, 2013, 4940-4947.	1.0	72
52	Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Advances, 2013, 3, 10427.	1.7	56
53	Continuous production of iron-based nanocrystals by laser pyrolysis. Effect of operating variables on size, composition and magnetic response. Nanotechnology, 2013, 24, 325603.	1.3	16
54	Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology, 2012, 23, 425605.	1.3	29

#	Article	IF	CITATIONS
55	Study of Oxygen Reactivity in La1â^x Sr x CoO3â~Î^ Perovskites for Total Oxidation of Toluene. Catalysis Letters, 2012, 142, 408-416.	1.4	49
56	Chemical and electronic characterization of cobalt in a lanthanum perovskite. Effects of strontium substitution. Journal of Solid State Chemistry, 2010, 183, 27-32.	1.4	36
57	Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging. Small, 2010, 6, 2026-2034.	5.2	136
58	Hydrophobic Gold Nanoparticle Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles. Nano Letters, 2010, 10, 3733-3739.	4.5	200
59	Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials. Chemistry of Materials, 2010, 22, 6459-6466.	3.2	94
60	Hydrogenated Amorphous Silicon (a-Si:H) Colloids. Chemistry of Materials, 2010, 22, 6378-6383.	3.2	63
61	Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C ₁ Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol. Journal of Physical Chemistry A, 2010, 114, 4009-4016.	1.1	62
62	Reactivity of LaNi1â^'y Co y O3â^´Î´ Perovskite Systems in the Deep Oxidation of Toluene. Catalysis Letters, 2009, 131, 164-169.	1.4	18
63	Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catalysis Today, 2009, 143, 347-354.	2.2	51
64	Water plasmas for the revalorisation of heavy oils and cokes from petroleum refining. Environmental Science & Technology, 2009, 43, 2557-2562.	4.6	26
65	Carbon nanotubes—mesoporous silica composites as controllable biomaterials. Journal of Materials Chemistry, 2009, 19, 7745.	6.7	21
66	Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. Chemical Communications, 2009, , 6192.	2.2	36
67	Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites. Catalysis Communications, 2009, 10, 1898-1902.	1.6	24
68	Reactivity of lanthanum substituted cobaltites toward carbon particles. Journal of Catalysis, 2008, 257, 334-344.	3.1	81
69	Ar + NO microwave plasmas for <i>Escherichia coli</i> sterilization. Journal Physics D: Applied Physics, 2008, 41, 092002.	1.3	14
70	Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2Systems by Flowing Microwave Discharges. Journal of Physical Chemistry A, 2007, 111, 1057-1065.	1.1	25
71	Plasma catalysis over lanthanum substituted perovskites. Catalysis Communications, 2007, 8, 1739-1742.	1.6	16
72	XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 2007, 45, 89-96.	5.4	222

#	Article	IF	CITATIONS
73	Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts. Journal of Catalysis, 2007, 247, 288-297.	3.1	51
74	Plasma Chemistry of NO in Complex Gas Mixtures Excited with a Surfatron Launcher. Journal of Physical Chemistry A, 2005, 109, 4930-4938.	1.1	29
75	Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85, 4004-4006.	1.5	74