
William A Carlezon Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mesolimbic Dopamine Reward Circuit in Depression. Biological Psychiatry, 2006, 59, 1151-1159.	1.3	1,739
2	The many faces of CREB. Trends in Neurosciences, 2005, 28, 436-445.	8.6	1,177
3	Mania-like behavior induced by disruption of <i>CLOCK</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6406-6411.	7.1	720
4	Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature, 1999, 401, 272-276.	27.8	591
5	GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nature Medicine, 2006, 12, 1269-1277.	30.7	504
6	Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology, 2009, 56, 122-132.	4.1	483
7	Altered Responsiveness to Cocaine and Increased Immobility in the Forced Swim Test Associated with Elevated cAMP Response Element-Binding Protein Expression in Nucleus Accumbens. Journal of Neuroscience, 2001, 21, 7397-7403.	3.6	466
8	Antidepressant-Like Effects of κ-Opioid Receptor Antagonists in the Forced Swim Test in Rats. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 323-330.	2.5	436
9	Long-Term Memory Is Facilitated by cAMP Response Element-Binding Protein Overexpression in the Amygdala. Journal of Neuroscience, 2001, 21, 2404-2412.	3.6	396
10	Dynorphin, stress, and depression. Brain Research, 2010, 1314, 56-73.	2.2	369
11	Depressive-Like Effects of the κ-Opioid Receptor Agonist Salvinorin A on Behavior and Neurochemistry in Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 440-447.	2.5	340
12	Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nature Protocols, 2007, 2, 2987-2995.	12.0	335
13	Rewarding Actions of Phencyclidine and Related Drugs in Nucleus Accumbens Shell and Frontal Cortex. Journal of Neuroscience, 1996, 16, 3112-3122.	3.6	331
14	Fear Conditioning Occludes LTP-Induced Presynaptic Enhancement of Synaptic Transmission in the Cortical Pathway to the Lateral Amygdala. Neuron, 2002, 34, 289-300.	8.1	302
15	Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse?. Trends in Neurosciences, 2002, 25, 610-615.	8.6	255
16	Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nature Neuroscience, 2002, 5, 13-14.	14.8	251
17	Effects of Î ^e -opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology, 2004, 172, 463-470.	3.1	248
18	Essential Role for TRPC5 in Amygdala Function and Fear-Related Behavior. Cell, 2009, 137, 761-772.	28.9	245

#	Article	IF	CITATIONS
19	Enduring behavioral effects of early exposure to methylphenidate in rats. Biological Psychiatry, 2003, 54, 1330-1337.	1.3	225
20	Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology, 2013, 229, 435-452.	3.1	220
21	Anxiolytic-Like Effects of κ-Opioid Receptor Antagonists in Models of Unlearned and Learned Fear in Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 838-845.	2.5	216
22	Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1648-55.	7.1	208
23	Behavioral methods to study anxiety in rodents. Dialogues in Clinical Neuroscience, 2017, 19, 181-191.	3.7	196
24	Glutamate Receptors in Extinction and Extinction-Based Therapies for Psychiatric Illness. Neuropsychopharmacology, 2011, 36, 274-293.	5.4	152
25	A High-Efficiency Synthetic Promoter That Drives Transgene Expression Selectively in Noradrenergic Neurons. Human Gene Therapy, 2001, 12, 1731-1740.	2.7	150
26	Effects of Striatal ΔFosB Overexpression and Ketamine on Social Defeat Stress–Induced Anhedonia in Mice. Biological Psychiatry, 2014, 76, 550-558.	1.3	144
27	Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse. Neuron, 2000, 26, 247-257.	8.1	143
28	Development of \hat{I}° Opioid Receptor Antagonists. Journal of Medicinal Chemistry, 2013, 56, 2178-2195.	6.4	140
29	Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biological Psychiatry, 2005, 57, 343-350.	1.3	136
30	Blockade of Astrocytic Glutamate Uptake in Rats Induces Signs of Anhedonia and Impaired Spatial Memory. Neuropsychopharmacology, 2010, 35, 2049-2059.	5.4	136
31	Use of herpes virus amplicon vectors to study brain disorders. BioTechniques, 2005, 39, 381-391.	1.8	133
32	NMDA Receptors Regulate Nicotine-Enhanced Brain Reward Function and Intravenous Nicotine Self-Administration: Role of the Ventral Tegmental Area and Central Nucleus of the Amygdala. Neuropsychopharmacology, 2009, 34, 266-281.	5.4	132
33	Kappa-opioid ligands in the study and treatment of mood disorders. , 2009, 123, 334-343.		130
34	Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology, 2012, 62, 167-176.	4.1	127
35	Pathway- and Cell-Specific Kappa-Opioid Receptor Modulation of Excitation-Inhibition Balance DifferentiallyÂGates D1 and D2 Accumbens Neuron Activity. Neuron, 2017, 93, 147-163.	8.1	124
36	Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials. Depression and Anxiety, 2016, 33, 895-906.	4.1	123

#	Article	IF	CITATIONS
37	Blockade of Astrocytic Glutamate Uptake in the Prefrontal Cortex Induces Anhedonia. Neuropsychopharmacology, 2012, 37, 2467-2475.	5.4	118
38	Kappa Opioid Receptor Signaling in the Basolateral Amygdala Regulates Conditioned Fear and Anxiety in Rats. Biological Psychiatry, 2011, 70, 425-433.	1.3	116
39	Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacology, 1996, 128, 413-420.	3.1	113
40	Reward-aversion circuitry in analgesia and pain: Implications for psychiatric disorders. European Journal of Pain, 2007, 11, 7-7.	2.8	112
41	Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nature Reviews Neurology, 2022, 18, 273-288.	10.1	111
42	Elevated Expression of 5-HT _{1B} Receptors in Nucleus Accumbens Efferents Sensitizes Animals to Cocaine. Journal of Neuroscience, 2002, 22, 10856-10863.	3.6	107
43	The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology, 2019, 44, 1349-1353.	5.4	106
44	Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Scientific Reports, 2019, 9, 16928.	3.3	98
45	Quantified Coexpression Analysis of Central Amygdala Subpopulations. ENeuro, 2018, 5, ENEURO.0010-18.2018.	1.9	98
46	Duration of Action of a Broad Range of Selective κ-Opioid Receptor Antagonists Is Positively Correlated with c-Jun N-Terminal Kinase-1 Activation. Molecular Pharmacology, 2011, 80, 920-929.	2.3	96
47	Self-Stimulation and Drug Reward Mechanisms. Annals of the New York Academy of Sciences, 1992, 654, 192-198.	3.8	95
48	Behavioral and Anatomical Interactions between Dopamine and Corticotropin-Releasing Factor in the Rat. Journal of Neuroscience, 2006, 26, 3855-3863.	3.6	94
49	Extinction of drug- and withdrawal-paired cues in animal models: Relevance to the treatment of addiction. Neuroscience and Biobehavioral Reviews, 2010, 35, 285-302.	6.1	94
50	Distinct Sites of Opiate Reward and Aversion within the Midbrain Identified Using a Herpes Simplex Virus Vector Expressing GluR1. Journal of Neuroscience, 2000, 20, RC62-RC62.	3.6	92
51	Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. Journal of Neuroscience, 2017, 37, 7656-7668.	3.6	92
52	Region-specific induction of ?FosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse, 1999, 33, 118-128.	1.2	89
53	Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules. Neuropharmacology, 2004, 47, 47-60.	4.1	89
54	Sensitivity of the Five-Choice Serial Reaction Time Task to the Effects of Various Psychotropic Drugs in Sprague-Dawley Rats. Biological Psychiatry, 2007, 62, 687-693.	1.3	88

#	Article	IF	CITATIONS
55	Altered Attention and Prefrontal Cortex Gene Expression in Rats after Binge-Like Exposure to Cocaine during Adolescence. Journal of Neuroscience, 2006, 26, 9656-9665.	3.6	86
56	Altered Sensitivity to Rewarding and Aversive Drugs in Mice with Inducible Disruption of cAMP Response Element-Binding Protein Function within the Nucleus Accumbens. Journal of Neuroscience, 2009, 29, 1855-1859.	3.6	84
57	Activation of CREB in the Nucleus Accumbens Shell Produces Anhedonia and Resistance to Extinction of Fear in Rats. Journal of Neuroscience, 2011, 31, 3095-3103.	3.6	84
58	Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness. Cellular and Molecular Neurobiology, 2012, 32, 737-748.	3.3	84
59	Toward an immune-mediated subtype of autism spectrum disorder. Brain Research, 2015, 1617, 72-92.	2.2	84
60	Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats. Biological Psychiatry, 2005, 57, 120-125.	1.3	81
61	Effects of pain- and analgesia-related manipulations on intracranial self-stimulation in rats: Further studies on pain-depressed behavior. Pain, 2009, 144, 170-177.	4.2	80
62	Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology, 2010, 210, 263-274.	3.1	80
63	The Kappa-Opioid Agonist U69,593 Blocks Cocaine-Induced Enhancement of Brain Stimulation Reward. Biological Psychiatry, 2008, 64, 982-988.	1.3	79
64	Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity. BMC Pharmacology, 2012, 12, 5.	0.4	78
65	Pain-Related Depression of the Mesolimbic Dopamine System in Rats: Expression, Blockade by Analgesics, and Role of Endogenous lº-opioids. Neuropsychopharmacology, 2014, 39, 614-624.	5.4	78
66	Repeated Exposure to the Î ^e -Opioid Receptor Agonist Salvinorin A Modulates Extracellular Signal-Regulated Kinase and Reward Sensitivity. Biological Psychiatry, 2011, 70, 744-753.	1.3	74
67	Schizophrenia-Like Attentional Deficits Following Blockade of Prefrontal Cortex GABAA Receptors. Neuropsychopharmacology, 2011, 36, 1703-1713.	5.4	73
68	Desipramine Reduces Stress-Activated Dynorphin Expression and CREB Phosphorylation in NAc Tissue. Molecular Pharmacology, 2009, 75, 704-712.	2.3	72
69	MKâ€801 Disrupts the expression but not the development of bromocriptine sensitization: A stateâ€dependency interpretation. Synapse, 1995, 20, 1-9.	1.2	71
70	D-Cycloserine Effects on Extinction of Conditioned Responses to Drug-Related Cues. Biological Psychiatry, 2012, 71, 947-955.	1.3	70
71	Antidepressant-like effects of cytidine in the forced swim test in rats. Biological Psychiatry, 2002, 51, 882-889.	1.3	68
72	Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2). Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2761-2765.	2.2	66

#	Article	IF	CITATIONS
73	Behavioral and Molecular Effects of Dopamine D1 Receptor Stimulation during Naloxone-Precipitated Morphine Withdrawal. Journal of Neuroscience, 2006, 26, 6450-6457.	3.6	66
74	It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists. Biological Psychiatry, 2008, 63, 725-727.	1.3	65
75	Learning and reconsolidation implicate different synaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4798-4803.	7.1	65
76	Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC–Amygdala Circuits. Journal of Neuroscience, 2018, 38, 3358-3372.	3.6	65
77	Brain Reward Regulated by AMPA Receptor Subunits in Nucleus Accumbens Shell. Journal of Neuroscience, 2006, 26, 11665-11669.	3.6	64
78	Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats. Journal of Neuroscience, 2016, 36, 5748-5762.	3.6	64
79	Synthesis and in vitro evaluation of salvinorin A analogues: Effect of configuration at C(2) and substitution at C(18). Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4679-4685.	2.2	63
80	Transient Overexpression of α-Ca ²⁺ /Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine. Journal of Neuroscience, 2010, 30, 939-949.	3.6	61
81	Electroconvulsive Seizures Stimulate Glial Proliferation and Reduce Expression of Sprouty2 within the Prefrontal Cortex of Rats. Biological Psychiatry, 2007, 62, 505-512.	1.3	59
82	Blockade of the GLT-1 Transporter in the Central Nucleus of the Amygdala Induces both Anxiety and Depressive-Like Symptoms. Neuropsychopharmacology, 2015, 40, 1700-1708.	5.4	59
83	Synthesis and in vitro pharmacological studies of new C(2) modified salvinorin A analogues. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3744-3747.	2.2	58
84	Roles of Nucleus Accumbens CREB and Dynorphin in Dysregulation of Motivation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012005-a012005.	6.2	57
85	Morphine-induced potentiation of brain stimulation reward is enhanced by MK-801. Brain Research, 1993, 620, 339-342.	2.2	56
86	Standard protecting groups create potent and selective κ opioids: Salvinorin B alkoxymethyl ethers. Bioorganic and Medicinal Chemistry, 2008, 16, 1279-1286.	3.0	56
87	Exposure to the Selective κ-Opioid Receptor Agonist Salvinorin A Modulates the Behavioral and Molecular Effects of Cocaine in Rats. Neuropsychopharmacology, 2008, 33, 2676-2687.	5.4	56
88	Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats. Psychopharmacology, 2017, 234, 1603-1614.	3.1	56
89	New neoclerodane diterpenoids isolated from the leaves of Salvia divinorum and their binding affinities for human l° opioid receptors. Bioorganic and Medicinal Chemistry, 2005, 13, 5635-5639.	3.0	55
90	Activation of Raphe Efferents to the Medial Prefrontal Cortex by Corticotropin-Releasing Factor: Correlation with Anxiety-Like Behavior. Biological Psychiatry, 2008, 63, 832-839.	1.3	55

#	Article	IF	CITATIONS
91	D-Cycloserine Facilitates Extinction of Naloxone-Induced Conditioned Place Aversion in Morphine-Dependent Rats. Biological Psychiatry, 2010, 67, 85-87.	1.3	55
92	8-epi-Salvinorin B: crystal structure and affinity at the κ opioid receptor. Beilstein Journal of Organic Chemistry, 2007, 3, 1.	2.2	54
93	Sustained Pain-Related Depression of Behavior: Effects of Intraplantar Formalin and Complete Freund's Adjuvant on Intracranial Self-Stimulation (ICSS) and Endogenous kappa Opioid Biomarkers in Rats. Molecular Pain, 2014, 10, 1744-8069-10-62.	2.1	54
94	Genetic analysis of behavioral, neuroendocrine, and biochemical parameters in inbred rodents: initial studies in Lewis and Fischer 344 rats and in A/J and C57BL/6J mice. Brain Research, 1998, 805, 55-68.	2.2	53
95	Ablation of Kappa-Opioid Receptors from Brain Dopamine Neurons has Anxiolytic-Like Effects and Enhances Cocaine-Induced Plasticity. Neuropsychopharmacology, 2013, 38, 1585-1597.	5.4	53
96	Effects of antipsychotic drugs on MK-801-induced attentional and motivational deficits in rats. Neuropharmacology, 2009, 56, 788-797.	4.1	52
97	Coactivation of thalamic and cortical pathways induces input timing–dependent plasticity in amygdala. Nature Neuroscience, 2012, 15, 113-122.	14.8	52
98	Pituitary Adenylate Cyclase-Activating Polypeptide Induces Postsynaptically Expressed Potentiation in the Intra-amygdala Circuit. Journal of Neuroscience, 2012, 32, 14165-14177.	3.6	51
99	The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats. European Journal of Pharmacology, 2009, 604, 58-65.	3.5	50
100	Corticotropin-Releasing Factor (CRF)-Induced Disruption of Attention in Rats Is Blocked by the κ-Opioid Receptor Antagonist JDTic. Neuropsychopharmacology, 2012, 37, 2809-2816.	5.4	50
101	Effects of acute and chronic social defeat stress are differentially mediated by the dynorphin/kappa-opioid receptor system. Behavioural Pharmacology, 2015, 26, 654-663.	1.7	49
102	Stress-Induced Reinstatement of Nicotine Preference Requires Dynorphin/Kappa Opioid Activity in the Basolateral Amygdala. Journal of Neuroscience, 2016, 36, 9937-9948.	3.6	49
103	Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology, 2015, 232, 1555-1569.	3.1	47
104	Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. Journal of Neurochemistry, 2003, 87, 107-118.	3.9	45
105	Differential Roles of GABAA Receptor Subtypes in Benzodiazepine-Induced Enhancement of Brain-Stimulation Reward. Neuropsychopharmacology, 2012, 37, 2531-2540.	5.4	45
106	ΔFosB Enhances the Rewarding Effects of Cocaine While Reducing the Pro-Depressive Effects of the Kappa-Opioid Receptor Agonist U50488. Biological Psychiatry, 2012, 71, 44-50.	1.3	45
107	Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3?-tropanyl-1H-indole-3-carboxylic acid ester, and 1?H, 3?, 5?H-tropan-3-yl-3,5-dichlorobenzoate. Drug Development Research, 1991, 23, 289-300.	2.9	44
108	MK-801 (Dizocilpine): Synergist and conditioned stimulus in bromocriptine-induced psychomotor sensitization. , 1996, 22, 362-368.		43

#	Article	IF	CITATIONS
109	Sex-dependent neurobiological features of prenatal immune activation via TLR7. Molecular Psychiatry, 2020, 25, 2330-2341.	7.9	43
110	Perinatal Immune Activation Produces Persistent Sleep Alterations and Epileptiform Activity in Male Mice. Neuropsychopharmacology, 2018, 43, 482-491.	5.4	43
111	Antidepressant-like effects of cranial stimulation within a low-energy magnetic field in rats. Biological Psychiatry, 2005, 57, 571-576.	1.3	42
112	<i>N</i> -Methylacetamide Analog of Salvinorin A: A Highly Potent and Selective κ-Opioid Receptor Agonist with Oral Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 188-195.	2.5	42
113	CD-1 and Balb/cJ mice do not show enduring antidepressant-like effects of ketamine in tests of acute antidepressant efficacy. Psychopharmacology, 2011, 215, 689-695.	3.1	42
114	Omega-3 Fatty Acid Treatment, With or Without Cytidine, Fails to Show Therapeutic Properties in Bipolar Disorder. Journal of Clinical Psychopharmacology, 2012, 32, 699-703.	1.4	41
115	AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse, 1999, 31, 256-262.	1.2	40
116	Lesions of the nucleus accumbens in rats reduce opiate reward but do not alter context-specific opiate tolerance Behavioral Neuroscience, 1989, 103, 1327-1334.	1.2	39
117	Behavioral effects of short-term administration of lithium and valproic acid in rats. Brain Research, 2006, 1093, 83-94.	2.2	39
118	Lithium Administration to Preadolescent Rats Causes Long-Lasting Increases in Anxiety-Like Behavior and Has Molecular Consequences. Journal of Neuroscience, 2006, 26, 6031-6039.	3.6	39
119	Cocaine and SKF-82958 potentiate brain stimulation reward in Swiss-Webster mice. Psychopharmacology, 2002, 163, 238-248.	3.1	37
120	Prenatal Exposure to Cocaine Increases the Rewarding Potency of Cocaine and Selective Dopaminergic Agonists in Adult Mice. Biological Psychiatry, 2008, 63, 214-221.	1.3	37
121	Repeated Exposure to Rewarding Brain Stimulation Downregulates GluR1 Expression in the Ventral Tegmental Area. Neuropsychopharmacology, 2001, 25, 234-241.	5.4	36
122	Place Conditioning to Study Drug Reward and Aversion. , 2003, 84, 243-250.		36
123	Attention Deficits and Hyperactivity Following Inhibition of cAMP-Dependent Protein Kinase Within the Medial Prefrontal Cortex of Rats. Neuropsychopharmacology, 2009, 34, 2143-2155.	5.4	36
124	Digital devices and continuous telemetry: opportunities for aligning psychiatry and neuroscience. Neuropsychopharmacology, 2018, 43, 2499-2503.	5.4	36
125	Phencyclidine-induced potentiation of brain stimulation reward: acute effects are not altered by repeated administration. Psychopharmacology, 1993, 111, 402-408.	3.1	34
126	Role of the Bed Nucleus of the Stria Terminalis (BST) in the Expression of Conditioned Fear. Annals of the New York Academy of Sciences, 2006, 1071, 538-541.	3.8	34

#	Article	IF	CITATIONS
127	Synthesis and in vitro pharmacological studies of C(4) modified salvinorin A analogues. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4169-4173.	2.2	32
128	Modification of the furan ring of salvinorin A: Identification of a selective partial agonist at the kappa opioid receptor. Bioorganic and Medicinal Chemistry, 2009, 17, 1370-1380.	3.0	32
129	Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology, 2020, 45, 90-103.	5.4	32
130	Diazepam and cocaine potentiate brain stimulation reward in C57BL/6J mice. Behavioural Brain Research, 2010, 206, 17-20.	2.2	31
131	Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats. Psychoneuroendocrinology, 2016, 64, 12-21.	2.7	31
132	LTP in the lateral amygdala during cocaine withdrawal. European Journal of Neuroscience, 2006, 23, 239-250.	2.6	30
133	Lovastatin potentiates the antidepressant efficacy of fluoxetine in rats. Pharmacology Biochemistry and Behavior, 2009, 92, 88-92.	2.9	30
134	Drug withdrawal conceptualized as a stressor. Behavioural Pharmacology, 2014, 25, 473-492.	1.7	30
135	Ventral mesencephalic â^, opioid receptors are involved in modulation of basal mesolimbic dopamine neurotransmission: an anatomical localization study. Brain Research, 1993, 622, 348-352.	2.2	28
136	Synthesis and in vitro pharmacological studies of new C(4)-modified salvinorin A analogues. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5498-5502.	2.2	28
137	Glial Abnormalities in Mood Disorders. Harvard Review of Psychiatry, 2014, 22, 334-337.	2.1	28
138	Selective κ Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters. PLoS ONE, 2013, 8, e70701.	2.5	27
139	Contribution of drug doses and conditioning periods to psychomotor stimulant sensitization. Psychopharmacology, 2006, 185, 451-458.	3.1	25
140	Viral-Mediated Gene Transfer to Study the Behavioral Correlates of CREB Function. , 2003, 79, 331-350.		24
141	Microinjection of the L-Type Calcium Channel Antagonist Diltiazem into the Ventral Nucleus Accumbens Shell Facilitates Cocaine-Induced Conditioned Place Preferences. Biological Psychiatry, 2006, 59, 1236-1239.	1.3	24
142	Nucleus Accumbens Medium Spiny Neuron Subtypes Differentially Regulate Stress-Associated Alterations in Sleep Architecture. Biological Psychiatry, 2021, 89, 1138-1149.	1.3	24
143	Differential signaling properties at the kappa opioid receptor of 12-epi-salvinorin A and its analogues. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1023-1026.	2.2	22
144	PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats. Neurobiology of Learning and Memory, 2019, 157, 24-34.	1.9	21

#	Article	IF	CITATIONS
145	Concordant neurophysiological signatures of cognitive control in humans and rats. Neuropsychopharmacology, 2021, 46, 1252-1262.	5.4	21
146	Amygdalar GABAergic-rich neural grafts attenuate anxiety-like behavior in rats. Behavioural Brain Research, 2009, 205, 146-153.	2.2	20
147	Use of Adenoâ€Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice. Current Protocols in Neuroscience, 2015, 73, 4.37.1-4.37.31.	2.6	20
148	Pituitary Adenylate Cyclase–Activating Polypeptide Disrupts Motivation, Social Interaction, and Attention in Male Sprague Dawley Rats. Biological Psychiatry, 2016, 80, 955-964.	1.3	19
149	Behavioral Pharmacology of Novel Kappa Opioid Receptor Antagonists in Rats. International Journal of Neuropsychopharmacology, 2019, 22, 735-745.	2.1	19
150	Attenuation of the locomotor-sensitizing effects of the D2 dopamine agonist bromocriptine by either the D1 antagonist SCH 23390 or the D2 antagonist raclopride. Synapse, 1994, 17, 155-159.	1.2	18
151	Reduction of fear-potentiated startle by benzodiazepines in C57BL/6J mice. Psychopharmacology, 2011, 213, 697-706.	3.1	18
152	Anatomically dissociable effects of dopamine D1 receptor agonists on reward and relief of withdrawal in morphine-dependent rats. Psychopharmacology, 2009, 204, 227-239.	3.1	17
153	Extinction of conditioned opiate withdrawal in rats in a two-chambered place conditioning apparatus. Nature Protocols, 2012, 7, 517-526.	12.0	17
154	Kappaâ€opioid receptors differentially regulate low and high levels of ethanol intake in female mice. Brain and Behavior, 2016, 6, e00523.	2.2	16
155	<i>N</i> â€Methylâ€ <scp>d</scp> â€aspartate receptor coâ€agonist availability affects behavioral and neurochemical responses to cocaine: insights into comorbid schizophrenia and substance abuse. Addiction Biology, 2019, 24, 40-50.	2.6	16
156	Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nature Communications, 2020, 11, 5180.	12.8	15
157	Attenuated dopamine receptor signaling in nucleus accumbens core in a rat model of chemically-induced neuropathy. Neuropharmacology, 2020, 166, 107935.	4.1	13
158	Effects of the anticonvulsant lacosamide compared to valproate and lamotrigine on cocaine-enhanced reward in rats. Brain Research, 2012, 1479, 44-51.	2.2	11
159	Neuroinflammation and Autism: Toward Mechanisms and Treatments. Neuropsychopharmacology, 2013, 38, 241-242.	5.4	11
160	Tracking Down the Molecular Substrates of Stress: New Roles for p38α MAPK and Kappa-Opioid Receptors. Neuron, 2011, 71, 383-385.	8.1	10
161	Illuminating the Neural Circuitry of Compulsive Behaviors. Science, 2013, 340, 1174-1175.	12.6	10
162	Prior experience with bromocriptine in the home cage attenuates locomotor sensitization in rats. Behavioural Brain Research, 2002, 134, 1-8.	2.2	9

#	Article	IF	CITATIONS
163	Ion channels and intracellular signaling proteins as potential targets for novel therapeutics for addictive and depressive disorders. , 2005, 108, 65-75.		9
164	Corticotropin-releasing factor from the rat brain measured by protein immunoblot. Peptides, 2005, 26, 2252-2256.	2.4	8
165	Ascent of the kappa-opioid receptor in psychopharmacology. Psychopharmacology, 2010, 210, 107-108.	3.1	8
166	Neuropsychopharmacology (NPP): gender balance in journal function. Neuropsychopharmacology, 2019, 44, 4-8.	5.4	8
167	Blockade of kappa-opioid receptors amplifies microglia-mediated inflammatory responses. Pharmacology Biochemistry and Behavior, 2022, 212, 173301.	2.9	8
168	Altered sleep during spontaneous cannabinoid withdrawal in male mice. Behavioural Pharmacology, 2022, 33, 195-205.	1.7	8
169	Extinction of conditioned opiate withdrawal in rats is blocked by intracerebroventricular infusion of an NMDA receptor antagonist. Neuroscience Letters, 2013, 541, 39-42.	2.1	7
170	Effects of the COVID-19 pandemic on gender representation among corresponding authors of Neuropsychopharmacology (NPP) manuscripts: submissions during January–June, 2020. Neuropsychopharmacology, 2021, 46, 269-270.	5.4	7
171	Unmet expectations: The brain minds. Nature Medicine, 2003, 9, 15-16.	30.7	6
172	Differential Effects of Nicotine and Nicotine Withdrawal on Fear Conditioning in Male Rats. International Journal of Neuropsychopharmacology, 2020, 23, 469-479.	2.1	6
173	α2-containing γ-aminobutyric acid type A receptors promote stress resiliency in male mice. Neuropsychopharmacology, 2021, 46, 2197-2206.	5.4	6
174	Reversal of both QNX-induced locomotion and habituation decrement is indicative of M1 agonist properties. Drug Development Research, 1991, 23, 333-339.	2.9	5
175	Neuropsychopharmacology (NPP): relationships between online attention and citation counts. Neuropsychopharmacology, 2019, 44, 1513-1515.	5.4	5
176	Intracranial self-stimulation and concomitant behaviors following systemic methamphetamine administration in Hnrnph1 mutant mice. Psychopharmacology, 2021, 238, 2031-2041.	3.1	5
177	Effects of Naloxone-Precipitated Morphine Withdrawal on Glutamate-Mediated Signaling in Striatal Neuronsin Vitro. Annals of the New York Academy of Sciences, 2003, 1003, 368-371.	3.8	4
178	Antidepressant effect of stem cell-derived monoaminergic grafts. NeuroReport, 2007, 18, 1663-1667.	1.2	4
179	NPP (Neuropsychopharmacology): update on gender balance in journal function. Neuropsychopharmacology, 2019, 44, 2145-2148.	5.4	4
180	Sprouty2 in the Dorsal Hippocampus Regulates Neurogenesis and Stress Responsiveness in Rats. PLoS ONE, 2015, 10, e0120693.	2.5	4

#	Article	IF	CITATIONS
181	Response: What role do GluR1 subunits play in drug abuse?. Trends in Neurosciences, 2003, 26, 182-183.	8.6	3
182	NPP statement on racism, discrimination, and abuse of power. Neuropsychopharmacology, 2020, 45, 1589-1590.	5.4	3
183	Neuropsychopharmacology (NPP) 2020 report on gender balance among corresponding authors and reviewers: before and during the COVID-19 pandemic. Neuropsychopharmacology, 2022, 47, 973-975.	5.4	3
184	Effects of modafinil on electroencephalographic microstates in healthy adults. Psychopharmacology, 2022, 239, 2573-2584.	3.1	3
185	Extreme Chipping: Addiction to a High-Fat Diet?. Biological Psychiatry, 2007, 61, 1019-1020.	1.3	2
186	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	1.3	2
187	Error Processing in Depressive States: A Translational Opportunity?. Neuropsychopharmacology, 2017, 42, 372-372.	5.4	2
188	Concurrent electrophysiological recording and cognitive testing in a rodent touchscreen environment. Scientific Reports, 2021, 11, 11665.	3.3	2
189	Super glue: emerging roles for non-neuronal brain cells in mental health. Neuropsychopharmacology, 2022, 47, 391-392.	5.4	2
190	Perspective: Progress on the Study and Treatment of Depressive Illness. Neuropsychopharmacology, 2009, 34, 1361-1362.	5.4	1
191	Circumspectives: The Replacements. Neuropsychopharmacology, 2015, 40, 1813-1814.	5.4	1
192	Neural Targets in the Study and Treatment of Social Cognition in Autism Spectrum Disorder. Handbook of Experimental Pharmacology, 2015, 228, 309-334.	1.8	1
193	Circumspectives: The Promise of Ketamine. Neuropsychopharmacology, 2015, 40, 257-258.	5.4	1
194	Neuropsychopharmacology (NPP): update on relationships between online attention and citation counts. Neuropsychopharmacology, 2021, 46, 1061-1063.	5.4	1
195	Regionâ€specific induction of ΔFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse, 1999, 33, 118-128.	1.2	1
196	Potential Utility of Kappa Ligands in the Treatment of Mood Disorders. , 2009, , 425-444.		1
197	Error-related Alpha Suppression: Scalp Topography and (Lack of) Modulation by Modafinil. Journal of Cognitive Neuroscience, 2022, 34, 864-876.	2.3	1
198	Reply to: Maintaining Clinical Relevance: Considerations for the Future of Research into D-Cycloserine and Cue Exposure Therapy for Addiction. Biological Psychiatry, 2012, 72, e31-e32.	1.3	0

#	Article	IF	CITATIONS
199	Neuropsychopharmacology: The 2013 Transition in Leadership. Neuropsychopharmacology, 2013, 38, 257-258.	5.4	0
200	Circumspectives: Viewing a Topic From Multiple Perspectives. Neuropsychopharmacology, 2014, 39, 263-263.	5.4	0
201	Circumspectives: Cannabis and Psychiatric Illness: Blunt Thoughts. Neuropsychopharmacology, 2016, 41, 391-392.	5.4	0
202	NPP: Our Designs for the Future. Neuropsychopharmacology, 2017, 42, 1371-1372.	5.4	0
203	Stress, HIF1a, and Adrenergic Function. , 2014, , 221-222.		0