Shengxi Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577418/publications.pdf

Version: 2024-02-01

172457 197818 4,953 57 29 49 citations h-index g-index papers 62 62 62 8331 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Rapid Biomarker Screening of Alzheimer's Disease by Interpretable Machine Learning and Graphene-Assisted Raman Spectroscopy. ACS Nano, 2022, 16, 6426-6436.	14.6	19
2	Photoluminescence Induced by Substitutional Nitrogen in Single-Layer Tungsten Disulfide. ACS Nano, 2022, 16, 7428-7437.	14.6	7
3	Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. Journal of Materials Research, 2022, 37, 1689-1713.	2.6	12
4	Accurate virus identification with interpretable Raman signatures by machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
5	Probing interlayer interaction via chiral phonons in layered honeycomb materials. Physical Review B, 2021, 103, .	3.2	14
6	Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices. Nano Letters, 2021, 21, 7419-7425.	9.1	1
7	Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS ₂ Heterostructures. ACS Nano, 2021, 15, 14394-14403.	14.6	36
8	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
9	Enhancing Second Harmonic Generation of Transition Metal Dichalcogenides Through 1D Nanoscrolls. , 2021, , .		0
10	Probing charge transfer in 2D MoS2/tellurene type-II p–n heterojunctions. MRS Communications, 2021, 11, 868-872.	1.8	4
11	Defect creation in WSe ₂ with a microsecond photoluminescence lifetime by focused ion beam irradiation. Nanoscale, 2020, 12, 2047-2056.	5.6	30
12	Unravelling the Thickness Dependence and Mechanism of Surface-Enhanced Raman Scattering on Ti ₃ C ₂ T _X MXene Nanosheets. Journal of Physical Chemistry C, 2020, 124, 17772-17782.	3.1	56
13	Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nature Communications, 2020, 11, 6167.	12.8	43
14	Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe. Journal of the American Chemical Society, 2020, 142, 17499-17507.	13.7	80
15	Chirality-Dependent Second Harmonic Generation of MoS ₂ Nanoscroll with Enhanced Efficiency. ACS Nano, 2020, 14, 13333-13342.	14.6	34
16	Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal. Physical Review Letters, 2020, 124, 236401.	7.8	27
17	Coherent Lattice Wobbling and Out-of-Phase Intensity Oscillations of Friedel Pairs Observed by Ultrafast Electron Diffraction. ACS Nano, 2020, 14, 8449-8458.	14.6	5
18	Anomalous phonon-mode dependence in polarized Raman spectroscopy of the topological Weyl semimetal TaP. Physical Review B, 2020, 101, .	3.2	8

#	Article	IF	Citations
19	Anisotropic Fano resonance in the Weyl semimetal candidate LaAlSi. Physical Review B, 2020, 102, .	3.2	16
20	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	13.7	21
21	Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions. Science Advances, 2019, 5, eaav1493.	10.3	43
22	Enhanced Raman Scattering on Nine 2D van der Waals Materials. Journal of Physical Chemistry Letters, 2019, 10, 3043-3050.	4.6	27
23	Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Nanomaterials, 2019, 9, 516.	4.1	31
24	Symmetry-Controlled Electron–Phonon Interactions in van der Waals Heterostructures. ACS Nano, 2019, 13, 552-559.	14.6	20
25	Double Resonance Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, 2019, , 131-162.	0.6	0
26	Tuning Electronic Structure of Single Layer MoS ₂ through Defect and Interface Engineering. ACS Nano, 2018, 12, 2569-2579.	14.6	203
27	Graphene-Enhanced Raman Scattering (GERS): Chemical Effect. , 2018, , 415-449.		6
28	Large Photothermal Effect in Subâ€40 nm hâ€8N Nanostructures Patterned Via Highâ€Resolution Ion Beam. Small, 2018, 14, 1800072.	10.0	12
29	Defect Engineering in Single-Layer MoS ₂ Using Heavy Ion Irradiation. ACS Applied Materials & amp; Interfaces, 2018, 10, 42524-42533.	8.0	138
30	Phonon localization in heat conduction. Science Advances, 2018, 4, eaat9460.	10.3	108
31	Photothermal Effect: Large Photothermal Effect in Subâ€40 nm hâ€BN Nanostructures Patterned Via Highâ€Resolution Ion Beam (Small 22/2018). Small, 2018, 14, 1870101.	10.0	1
32	Generating Sub-nanometer Pores in Single-Layer MoS ₂ by Heavy-Ion Bombardment for Gas Separation: A Theoretical Perspective. ACS Applied Materials & Separation: A Theoretical Perspective Action Action Perspective Action Act	8.0	37
33	Raman Enhancement of Blood Constituent Proteins Using Graphene. ACS Photonics, 2018, 5, 2978-2982.	6.6	29
34	Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy. IEEE Transactions on Electron Devices, 2018, 65, 4059-4067.	3.0	26
35	Sensitive Phonon-Based Probe for Structure Identification of 1T′ MoTe ₂ . Journal of the American Chemical Society, 2017, 139, 8396-8399.	13.7	46
36	Black Phosphorus: Optical Characterization, Properties and Applications. Small, 2017, 13, 1700823.	10.0	63

3

#	Article	IF	CITATIONS
37	Parallel Stitching of 2D Materials. Advanced Materials, 2016, 28, 2322-2329.	21.0	195
38	Controlled Sculpture of Black Phosphorus Nanoribbons. ACS Nano, 2016, 10, 5687-5695.	14.6	111
39	Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticleâ€Onâ€Mirror Structures. Small, 2016, 12, 5190-5199.	10.0	53
40	In-Plane Optical Anisotropy of Layered Gallium Telluride. ACS Nano, 2016, 10, 8964-8972.	14.6	179
41	Raman spectroscopy of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2016, 28, 353002.	1.8	168
42	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	9.1	177
43	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016, 16, 2260-2267.	9.1	328
44	Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale, 2015, 7, 4929-4934.	5.6	12
45	Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Accounts of Chemical Research, 2015, 48, 1862-1870.	15.6	141
46	The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4523-4530.	7.1	1,143
47	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 4080-4088.	9.1	182
48	Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Letters, 2015, 15, 2892-2901.	9.1	177
49	15-nm channel length MoS <inf>2</inf> FETs with single- and double-gate structures. , 2015, , .		18
50	Probing the Interlayer Coupling of Twisted Bilayer MoS ₂ Using Photoluminescence Spectroscopy. Nano Letters, 2014, 14, 5500-5508.	9.1	228
51	Dielectric Screening of Excitons and Trions in Single-Layer MoS ₂ . Nano Letters, 2014, 14, 5569-5576.	9.1	520
52	Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers. Journal of Applied Physics, 2013, 113, 113109.	2.5	38
53	Device Design for Gate-All-Around-Nanowire Tunneling CMOS-FETs of Axial Ge–Si Heterojunction Through Inverter Performance Evaluation. Journal of Computational and Theoretical Nanoscience, 2012, 9, 510-515.	0.4	0
54	Core-shell type of tunneling nanowire FETs for large driving current with unipolarity. , 2011, , .		2

#	Article	IF	CITATIONS
55	Design optimization of GNR tunneling-FETs for low voltage operation using EHT-based NEGF simulation. , 2010, , .		O
56	Design of complementary GAA-NW tunneling-FETs of axial Si-Ge heterostructure. , 2010, , .		2
57	A case study of on-chip sensor network in multiprocessor system-on-chip. , 2009, , .		4