Christof Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards synthetic unimolecular [Fe2S2]-photocatalysts sensitized by perylene dyes. Dyes and Pigments, 2022, 198, 109940.	3.7	7
2	Synthesis and Nanoscale Characterization of Hierarchically Assembled Molecular Nanosheets. Advanced Materials Interfaces, 2022, 9, .	3.7	2
3	Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru(II) Polypyridine Monolayers. Angewandte Chemie - International Edition, 2022, , .	13.8	1
4	Tuning nanowire lasers <i>via</i> hybridization with two-dimensional materials. Nanoscale, 2022, 14, 6822-6829.	5.6	2
5	Frontispiz: Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru ^{II} Polypyridine Monolayers. Angewandte Chemie, 2022, 134, .	2.0	0
6	Frontispiece: Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru ^{II} Polypyridine Monolayers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
7	Low-energy electron irradiation induced synthesis of molecular nanosheets: influence of the electron beam energy. Faraday Discussions, 2021, 227, 61-79.	3.2	21
8	Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. Npj 2D Materials and Applications, 2021, 5, .	7.9	56
9	Solâ^'Gel Processing of Waterâ€Soluble Carbon Nitride Enables Highâ€Performance Photoanodes**. ChemSusChem, 2021, 14, 2170-2179.	6.8	16
10	Polyampholytic Graft Copolymers as Matrix for TiO ₂ /Eosin Y/[Mo ₃ S ₁₃] ^{2â^'} Hybrid Materials and Lightâ€Driven Catalysis. Chemistry - A European Journal, 2021, 27, 16924-16929.	3.3	9
11	Odd–Even Effect in Electron Beam Irradiation of Hybrid Aromatic–Aliphatic Self-Assembled Monolayers of Fatty Acid. Journal of Physical Chemistry C, 2021, 125, 9310-9318.	3.1	4
12	1D <i>p–n</i> Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by Oneâ€Pot Chemical Vapor Deposition Synthesis. Advanced Functional Materials, 2021, 31, 2101086.	14.9	38
13	Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Subâ€Nanometer Porous Carbon Nanomembranes. Advanced Energy Materials, 2021, 11, 2100666.	19.5	45
14	Aging processes in high voltage lithium-ion capacitors containing liquid and gel-polymer electrolytes. Journal of Power Sources, 2021, 496, 229797.	7.8	7
15	Thiophenâ€basierte konjugierte acetylenische Polymere mit dualen aktiven Zentren für effiziente Cokatalysatorâ€freie photoelektrochemische Wasserreduktion im alkalischen Medium. Angewandte Chemie, 2021, 133, 19025-19031.	2.0	2
16	Thiopheneâ€Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Coâ€Catalystâ€Free Photoelectrochemical Water Reduction in Alkaline Medium. Angewandte Chemie - International Edition, 2021, 60, 18876-18881.	13.8	28
17	Lateral Heterostructures: 1D <i>p–n</i> Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by Oneâ€Pot Chemical Vapor Deposition Synthesis (Adv. Funct. Mater. 27/2021). Advanced Functional Materials, 2021, 31, 2170198.	14.9	0
18	Synthesis of Wetâ€Chemically Prepared Porousâ€Graphene Single Layers on Si/SiO ₂ Substrate Increasing the Photoluminescence of MoS ₂ in Heterostructures. Advanced Materials Interfaces. 2021. 8. 2100783.	3.7	3

CHRISTOF NEUMANN

#	Article	IF	CITATIONS
19	pH sensors based on amino-terminated carbon nanomembrane and single-layer graphene van der Waals heterostructures. Applied Physics Reviews, 2021, 8, 031410.	11.3	7
20	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	3.3	4
21	Synthesis of Wetâ€Chemically Prepared Porousâ€Graphene Single Layers on Si/SiO ₂ Substrate Increasing the Photoluminescence of MoS ₂ in Heterostructures (Adv. Mater. Interfaces) Tj ETQq1	10. 3.8 431	4 rgBT /Over
22	Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility. Advanced Materials, 2021, 33, e2105694.	21.0	16
23	Wet-chemical synthesis of solution-processible porous graphene via defect-driven etching. Carbon, 2021, 185, 568-577.	10.3	9
24	3-Dimensional graphene-like structures and applications: general discussion. Faraday Discussions, 2021, 227, 359-382.	3.2	0
25	Scalable one-step production of electrochemically exfoliated graphene decorated with transition metal oxides for high-performance supercapacitors. Nanoscale, 2021, 13, 15859-15868.	5.6	4
26	A Molecular Photosensitizer in a Porous Block Copolymer Matrixâ€Implications for the Design of Photocatalytically Active Membranes. Chemistry - A European Journal, 2021, 27, 17049-17058.	3.3	6
27	Rhodium-Complex-Functionalized and Polydopamine-Coated CdSe@CdS Nanorods for Photocatalytic NAD ⁺ Reduction. ACS Applied Nano Materials, 2021, 4, 12913-12919.	5.0	6
28	Photoactive ultrathin molecular nanosheets with reversible lanthanide binding terpyridine centers. Nanoscale, 2021, 13, 20583-20591.	5.6	3
29	Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures. Applied Surface Science, 2020, 499, 143917.	6.1	34
30	Waterâ€Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasiâ€Homogeneous Photocatalysis. Angewandte Chemie, 2020, 132, 495-503.	2.0	15
31	Waterâ€Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasiâ€Homogeneous Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 487-495.	13.8	107
32	High optical quality of MoS ₂ monolayers grown by chemical vapor deposition. 2D Materials, 2020, 7, 015011.	4.4	76
33	Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials, 2020, 26, 157-164.	18.0	79
34	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	21.0	31
35	Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes. Journal of Power Sources Advances, 2020, 6, 100031.	5.1	7
36	Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, 2070354.	21.0	0

CHRISTOF NEUMANN

#	Article	IF	CITATIONS
37	Photocatalytically active block copolymer hybrid micelles from double hydrophilic block copolymers. European Polymer Journal, 2020, 140, 110037.	5.4	9
38	Polyampholytic Poly(dehydroalanine) Graft Copolymers as Smart Templates for pH-Controlled Formation of Alloy Nanoparticles. Macromolecules, 2020, 53, 4511-4523.	4.8	14
39	Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano, 2020, 14, 7280-7286.	14.6	55
40	Scanning-Probe-Induced Assembling of Gold Striations on Mono- and Bi-Layered MoS2 on SiO2. MRS Advances, 2020, 5, 2201-2207.	0.9	1
41	Embedding molecular photosensitizers and catalysts in nanoporous block copolymer membranes for visible-light driven hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 6238-6244.	10.3	22
42	Copper Thiophosphate (Cu ₃ PS ₄) as Electrode for Sodiumâ€ion Batteries with Ether Electrolyte. Advanced Functional Materials, 2020, 30, 1910583.	14.9	25
43	Optically Triggered Control of the Charge Carrier Density in Chemically Functionalized Graphene Field Effect Transistors. Chemistry - A European Journal, 2020, 26, 6473-6478.	3.3	10
44	Plasmonic Metasurfaces Situated on Ultrathin Carbon Nanomembranes. ACS Photonics, 2020, 7, 1060-1066.	6.6	7
45	Identification of Semiconductive Patches in Thermally Processed Monolayer Oxoâ€Functionalized Graphene. Angewandte Chemie - International Edition, 2020, 59, 13657-13662.	13.8	31
46	Electrochemical delamination assisted transfer of molecular nanosheets. Nanoscale, 2020, 12, 8656-8663.	5.6	11
47	Plowing-induced nanoexfoliation of mono- and multilayer MoS2 surfaces. Physical Review Materials, 2020, 4, .	2.4	2
48	Preparation of Carbon Nanomembranes without Chemically Active Groups. ACS Applied Materials & Interfaces, 2019, 11, 31176-31181.	8.0	15
49	Ultra-Thin Plasmonic Metasurfaces Based on Carbon Nanomembranes. , 2019, , .		0
50	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie, 2019, 131, 10476-10482.	2.0	27
51	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie - International Edition, 2019, 58, 10368-10374.	13.8	42
52	Bottom-Up Synthesis of Graphene Monolayers with Tunable Crystallinity and Porosity. ACS Nano, 2019, 13, 7310-7322.	14.6	24
53	Polymer Brushes: Polymer Brushes on Hexagonal Boron Nitride (Small 19/2019). Small, 2019, 15, 1970099.	10.0	2
54	Tailoring Photoluminescence from MoS ₂ Monolayers by Mie-Resonant Metasurfaces. ACS Photonics, 2019, 6, 1002-1009.	6.6	82

CHRISTOF NEUMANN

#	Article	IF	CITATIONS
55	Poly(1,4â€Diethynylbenzene) Gradient Homojunction with Enhanced Charge Carrier Separation for Photoelectrochemical Water Reduction. Advanced Materials, 2019, 31, e1900961.	21.0	53
56	Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors. JPhys Materials, 2019, 2, 016001.	4.2	49
57	Polymer Brushes on Hexagonal Boron Nitride. Small, 2019, 15, 1805228.	10.0	18
58	Towards Covalent Photosensitizer-Polyoxometalate Dyads-Bipyridyl-Functionalized Polyoxometalates and Their Transition Metal Complexes. Molecules, 2019, 24, 4446.	3.8	4
59	Layered material platform for surface plasmon resonance biosensing. Scientific Reports, 2019, 9, 20286.	3.3	55
60	Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers. Carbon, 2018, 133, 176-185.	10.3	26
61	Lateral heterostructures of two-dimensional materials by electron-beam induced stitching. Carbon, 2018, 128, 106-116.	10.3	20
62	The direct measurement of the electronic density of states of graphene using metastable induced electron spectroscopy. 2D Materials, 2017, 4, 025068.	4.4	15
63	Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein Journal of Nanotechnology, 2016, 7, 2065-2073.	2.8	6
64	Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials. Nanoscale, 2015, 7, 13393-13397.	5.6	24
65	Tailoring the Mechanics of Ultrathin Carbon Nanomembranes by Molecular Design. Langmuir, 2014, 30, 8221-8227.	3.5	42
66	Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru(II) Polypyridine Monolayers. Angewandte Chemie, 0, , .	2.0	1