

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577387/publications.pdf Version: 2024-02-01

I RAV WELLS

#	Article	IF	CITATIONS
1	Feasibility of a Selective Epoxidation Technique for Use in Quantification of Peracetic Acid in Air Samples Collected on Sorbent Tubes. Journal of Chemical Health and Safety, 2022, 29, 378-386.	1.1	0
2	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. Journal of Chemical Health and Safety, 2021, 28, 268-278.	1.1	8
3	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions. Journal of Chemical Health and Safety, 2021, 28, 190-200.	1.1	8
4	Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models. Atmospheric Environment, 2020, 240, 117784.	1.9	16
5	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	5.8	70
6	Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. Journal of Occupational and Environmental Hygiene, 2019, 16, 519-531.	0.4	32
7	Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines. Safety and Health at Work, 2019, 10, 229-236.	0.3	37
8	Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printers. Journal of Chemical Health and Safety, 2019, 26, 19-30.	1.1	45
9	Three-dimensional printing with nano-enabled filaments releases polymer particles containing carbon nanotubes into air. Indoor Air, 2018, 28, 840-851.	2.0	40
10	Reactive indoor air chemistry and health—A workshop summary. International Journal of Hygiene and Environmental Health, 2017, 220, 1222-1229.	2.1	28
11	A chamber study of alkyl nitrate production formed by terpene ozonolysis in the presence of NO and alkanes. Atmospheric Environment, 2017, 171, 143-148.	1.9	5
12	ldentification and quantification of carbonyl-containing α-pinene ozonolysis products using O-tert-butylhydroxylamine hydrochloride. Journal of Atmospheric Chemistry, 2017, 74, 325-338.	1.4	10
13	Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields. Atmospheric Environment, 2016, 132, 300-308.	1.9	10
14	Gas-phase reaction products and yields of terpinolene with ozone and nitric oxide using a new derivatization agent. Atmospheric Environment, 2015, 122, 513-520.	1.9	9
15	Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents. Toxicology and Applied Pharmacology, 2015, 289, 542-549.	1.3	39
16	A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis. Atmospheric Environment, 2014, 99, 519-526.	1.9	16
17	Response to letter to the editor. Food and Chemical Toxicology, 2014, 70, 262-263.	1.8	0
18	Investigation of terpinoleneÂ+Âozone or terpinoleneÂ+Ânitrate radical reaction products using denuder/filter apparatus. Atmospheric Environment, 2013, 80, 524-532.	1.9	6

J RAY WELLS

#	Article	IF	CITATIONS
19	Evaluation of the hypersensitivity potential of alternative butter flavorings. Food and Chemical Toxicology, 2013, 62, 373-381.	1.8	23
20	Toxicological analysis of limonene reaction products using an in vitro exposure system. Toxicology in Vitro, 2013, 27, 721-730.	1.1	33
21	Irritancy and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal. Toxicological Sciences, 2012, 127, 371-381.	1.4	63
22	Use of denuder/filter apparatus to investigate terpene ozonolysis. Journal of Environmental Monitoring, 2012, 14, 1044.	2.1	7
23	2–Butoxyethanol and benzyl alcohol reactions with the nitrate radical: Rate coefficients and gasâ€phase products. International Journal of Chemical Kinetics, 2012, 44, 778-788.	1.0	15
24	Reaction rates of ozone and terpenes adsorbed to model indoor surfaces. Indoor Air, 2011, 21, 319-327.	2.0	36
25	Hydroxyl radical yields from reactions of terpene mixtures with ozone. Indoor Air, 2011, 21, 400-409.	2.0	36
26	Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins. Indoor Air, 2010, 20, 61-71.	2.0	5
27	Evaluation of Dicarbonyls Generated in a Simulated Indoor Air Environment Using an In Vitro Exposure System. Toxicological Sciences, 2010, 115, 453-461.	1.4	55
28	Surface chemistry reactions of α-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile. Indoor Air, 2008, 18, 394-407.	2.0	23
29	Feasibility of detection and quantification of gas-phase carbonyls in indoor environments using PFBHA derivatization and solid-phase microextraction (SPME). Journal of Environmental Monitoring, 2008, 10, 853.	2.1	14
30	Kinetics and Reaction Products of Ozone and Surface-Bound Squalene. Journal of ASTM International, 2008, 5, 1-12.	0.2	47
31	Evaluation of the Contact and Respiratory Sensitization Potential of Volatile Organic Compounds Generated by Simulated Indoor Air Chemistry. Toxicological Sciences, 2007, 97, 355-363.	1.4	106
32	Field and laboratory emission cell automation and control system for investigating surface chemistry reactions. Review of Scientific Instruments, 2007, 78, 014101.	0.6	9
33	Use of solid-phase microextraction to detect and quantify gas-phase dicarbonyls in indoor environments. Journal of Chromatography A, 2006, 1131, 275-280.	1.8	21
34	Gas-phase chemistry of dihydromyrcenol with ozone and OH radical: Rate constants and products. International Journal of Chemical Kinetics, 2006, 38, 451-463.	1.0	18
35	Gas-Phase Chemistry of α-Terpineol with Ozone and OH Radical: Rate Constants and Products. Environmental Science & Technology, 2005, 39, 6937-6943.	4.6	69
36	The hydroxyl radical reaction rate constant and products of 3,5-dimethyl-1-hexyn-3-ol. International Journal of Chemical Kinetics, 2004, 36, 534-544.	1.0	13

J RAY WELLS

#	Article	IF	CITATIONS
37	The hydroxyl radical reaction rate constant and products of cyclohexanol. International Journal of Chemical Kinetics, 2001, 33, 108-117.	1.0	15
38	Atmospheric transformation of volatile organic compounds. , 2000, 4036, 24.		1
39	The hydroxyl radical reaction rate constant and atmospheric transformation products of 2-propoxyethanol. International Journal of Chemical Kinetics, 1999, 31, 315-322.	1.0	8
40	The hydroxyl radical reaction rate constant and products of methyl isobutyrate. International Journal of Chemical Kinetics, 1999, 31, 551-557.	1.0	12
41	The hydroxyl radical reaction rate constant and atmospheric transformation products of 2-butanol and 2-pentanol. International Journal of Chemical Kinetics, 1998, 30, 745-752.	1.0	38
42	The hydroxyl radical reaction rate constants and atmospheric reaction products of three siloxanes. International Journal of Chemical Kinetics, 1997, 29, 445-451.	1.0	31
43	The hydroxyl radical reaction rate constant and products of ethyl 3-ethoxypropionate. International Journal of Chemical Kinetics, 1997, 29, 637-644.	1.0	9
44	The products of the reaction of the hydroxyl radical with 2-ethoxyethyl acetate. International Journal of Chemical Kinetics, 1996, 28, 475-480.	1.0	16
45	Interaction of H2 and Prototypical Solvent Molecules with Cr(CO)5 in the Gas Phase. The Journal of Physical Chemistry, 1994, 98, 8343-8351.	2.9	54
46	A time-resolved Fourier transform infrared study of the catalytic hydrogenation of ethene following UV photolysis of mixtures of iron pentacarbonyl C2H4, and hydrogen. The Journal of Physical Chemistry, 1993, 97, 3084-3087.	2.9	5
47	Rare gas-metal carbonyl complexes: bonding of rare gas atoms to the Group VIB pentacarbonyls. Journal of the American Chemical Society, 1992, 114, 2783-2787.	6.6	91
48	Bond dissociation energies and kinetics for the reaction of tungsten pentacarbonyl with the unlikely ligands nitrous oxide and dichlorodifluoromethane. Journal of the American Chemical Society, 1991, 113, 1294-1299.	6.6	24
49	Kinetics of aqueous phase reactions of the SO ₄ ^{â^'} radical with potential importance in cloud chemistry. Journal of Geophysical Research, 1989, 94, 1085-1094.	3.3	118
50	Kinetics of the reactions of atomic fluorine(2P) and atomic chlorine(2P) with nitric acid. The Journal of Physical Chemistry, 1988, 92, 2223-2228.	2.9	20
51	Methanethiol photolysis at 248 nm. Hydrogen atom yield and rate constant for the H + CH3SH reaction. The Journal of Physical Chemistry, 1986, 90, 4033-4037.	2.9	18
52	Channel specific rate constants for reactions of O(1D) with HCl and HBr. Journal of Chemical Physics, 1986, 84, 1349-1354.	1.2	58
53	Kinetic study of the reaction of OH with HCl from 240-1055 K. International Journal of Chemical Kinetics, 1985, 17, 1281-1297.	1.0	42
54	The OH+HBr reaction revisited. Journal of Chemical Physics, 1985, 83, 447-448.	1.2	28