Arne V Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. Journal of Fluid Mechanics, 2000, 403, 89-132.	3.4	627
2	Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers. Flow, Turbulence and Combustion, 2013, 91, 475-495.	2.6	234
3	On the structure of turbulent channel flow. Journal of Fluid Mechanics, 1982, 122, 295.	3.4	233
4	A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. Journal of Fluid Mechanics, 1993, 250, 169-207.	3.4	188
5	Very large structures in plane turbulent Couette flow. Journal of Fluid Mechanics, 1996, 320, 259.	3.4	179
6	Direct simulation of turbulent spots in plane Couette flow. Journal of Fluid Mechanics, 1991, 229, 499.	3.4	176
7	Turbulence reduction by screens. Journal of Fluid Mechanics, 1988, 197, 139-155.	3.4	159
8	Evolution and dynamics of shear-layer structures in near-wall turbulence. Journal of Fluid Mechanics, 1991, 224, 579-599.	3.4	141
9	Effects of imperfect spatial resolution on measurements of wall-bounded turbulentbx shear flows. Journal of Fluid Mechanics, 1983, 137, 409-421.	3.4	133
10	Warm summers during the Younger Dryas cold reversal. Nature Communications, 2018, 9, 1634.	12.8	103
11	On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots. Journal of Fluid Mechanics, 1987, 175, 119.	3.4	97
12	On the detection of turbulence-generating events. Journal of Fluid Mechanics, 1984, 139, 325-345.	3.4	80
13	An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closures. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1859-1866.	1.6	67
14	Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Physics of Fluids, 2000, 12, 688-702.	4.0	65
15	Modelling of rapid pressure—strain in Reynolds-stress closures. Journal of Fluid Mechanics, 1994, 269, 143-168.	3.4	62
16	Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations. Physics of Fluids, 2000, 12, 1554-1572.	4.0	52
17	Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Physics of Fluids, 2007, 19, 065102.	4.0	51
18	Explicit algebraic subgrid stress models with application to rotating channel flow. Journal of Fluid Mechanics, 2009, 639, 403-432.	3.4	43

ARNE V JOHANSSON

#	Article	IF	CITATIONS
19	Simulation of finite-size fibers in turbulent channel flows. Physical Review E, 2014, 89, 013006.	2.1	43
20	Title is missing!. Flow, Turbulence and Combustion, 2000, 63, 223-245.	2.6	42
21	Shear-free turbulence near a wall. Journal of Fluid Mechanics, 1997, 338, 363-385.	3.4	36
22	Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 2004, 502, 127-152.	3.4	35
23	High Order Accurate Solution of Flow Past a Circular Cylinder. Journal of Scientific Computing, 2006, 27, 431-441.	2.3	26
24	An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows. Journal of Fluid Mechanics, 2013, 723, 91-125.	3.4	26
25	Measurement and modelling of homogeneous axisymmetric turbulence. Journal of Fluid Mechanics, 1998, 374, 59-90.	3.4	22
26	Evaluation of a new wind tunnel with expanding corners. Experiments in Fluids, 2004, 36, 197-203.	2.4	21
27	An explicit algebraic model for the subgrid-scale passive scalar flux. Journal of Fluid Mechanics, 2013, 721, 541-577.	3.4	20
28	Direct drag measurements for a flat plate with passive boundary layer manipulators. Physics of Fluids, 1986, 29, 696.	1.4	19
29	Design of guide vanes for minimizing the pressure loss in sharp bends. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1934-1940.	1.6	19
30	Large eddy simulation of channel flow with and without periodic constrictions using the explicit algebraic subgrid-scale model. Journal of Turbulence, 2014, 15, 752-775.	1.4	16
31	Direct numerical simulation of an isothermal reacting turbulent wall-jet. Physics of Fluids, 2011, 23, .	4.0	15
32	Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models. Boundary-Layer Meteorology, 2016, 161, 19-47.	2.3	14
33	A novel method to determine the natural course of unruptured brain arteriovenous malformations without the need for follow-up information. Journal of Neurosurgery, 2018, 129, 10-16.	1.6	13
34	Improving LES with OpenFOAM by minimising numerical dissipation and use of explicit algebraic SGS stress model. Journal of Turbulence, 2019, 20, 697-722.	1.4	12
35	A stochastic extension of the explicit algebraic subgrid-scale models. Physics of Fluids, 2014, 26, 055113.	4.0	10
36	Design of the centrifugal fan of a belt-driven starter generator with reduced flow noise. International Journal of Heat and Fluid Flow, 2019, 76, 72-84.	2.4	10

ARNE V JOHANSSON

#	Article	IF	CITATIONS
37	Taking large-eddy simulation of wall-bounded flows to higher Reynolds numbers by use of anisotropy-resolving subgrid models. Physical Review Fluids, 2017, 2, .	2.5	10
38	LES computations and comparison with Kolmogorov theory for two-point pressure–velocity correlations and structure functions for globally anisotropic turbulence. Journal of Fluid Mechanics, 2000, 403, 23-36.	3.4	8
39	Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study. International Journal of Heat and Fluid Flow, 2013, 40, 65-80.	2.4	8
40	DNS Analysis of Wall Heat Transfer and Combustion Regimes in a Turbulent Non-premixed Wall-jet Flame. Flow, Turbulence and Combustion, 2016, 97, 951-969.	2.6	8
41	Consistent Boundary-Condition Treatment for Computation of the Atmospheric Boundary Layer Using the Explicit Algebraic Reynolds-Stress Model. Boundary-Layer Meteorology, 2019, 171, 53-77.	2.3	7
42	A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation. Physics of Fluids, 2013, 25, 105112.	4.0	6
43	Modelling of rapid pressure-strain in Reynolds stress closures ? Difficulties associated with rotational mean flows. Flow, Turbulence and Combustion, 1994, 53, 119-137.	0.2	5
44	Sixth International Symposium on Turbulence and Shear Flow Phenomena. Journal of Turbulence, 2011, 12, N14.	1.4	5
45	Capturing turbulent density flux effects in variable density flow by an explicit algebraic model. Physics of Fluids, 2015, 27, 045108.	4.0	3
46	Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion. Physics of Fluids, 2016, 28, .	4.0	3
47	Improving separated-flow predictions using an anisotropy-capturing subgrid-scale model. International Journal of Heat and Fluid Flow, 2017, 65, 246-251.	2.4	3
48	Modelling of Stably Stratified Atmospheric Boundary Layers with Varying Stratifications. Boundary-Layer Meteorology, 2020, 176, 229-249.	2.3	3
49	Explicit Algebraic Reynolds-stress Modelling of a Convective Atmospheric Boundary Layer Including Counter-Gradient Fluxes. Boundary-Layer Meteorology, 2021, 178, 487-497.	2.3	1
50	Investigations of shear free turbulent diffusion in a rotating frame. Proceedings in Applied Mathematics and Mechanics, 2004, 4, 458-459.	0.2	0