
Elisabet Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577173/publications.pdf Version: 2024-02-01

FLISARET DIDES

#	Article	IF	CITATIONS
1	Are deep eutectic solvents a real alternative to ionic liquids in metal-catalysed reactions?. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100610.	5.9	9
2	Ecotoxicological study of bio-based deep eutectic solvents formed by glycerol derivatives in two aquatic biomodels. Green Chemistry, 2022, 24, 5228-5241.	9.0	8
3	New insights into the interaction of triethylphosphine oxide with silica surface: exchange between different surface species. Physical Chemistry Chemical Physics, 2022, 24, 16755-16761.	2.8	1
4	Carbon materials functionalized with sulfonic groups as acid catalysts. , 2021, , 255-298.		4
5	Design of Glycerol-Based Solvents for the Immobilization of Palladium Nanocatalysts: A Hydrogenation Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 6875-6885.	6.7	16
6	Importance of pyrolysis temperature and pressure in the concentration of polycyclic aromatic hydrocarbons in wood waste-derived biochars. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105337.	5.5	17
7	Enzymatic synthesis of novel fructosylated compounds by Ffase from <i>Schwanniomyces occidentalis</i> in green solvents. RSC Advances, 2021, 11, 24312-24319.	3.6	3
8	Readily Scalable Methodology for the Synthesis of Nonsymmetric Glyceryl Diethers by a Tandem Acid-/Base-Catalyzed Process. Organic Process Research and Development, 2020, 24, 154-162.	2.7	5
9	Study of interactions between BrÃ,nsted acids and triethylphosphine oxide in solution by ³¹ P NMR: evidence for 2 : 1 species. Physical Chemistry Chemical Physics, 2020, 22, 24351-24358.	2.8	13
10	Selective oxidation of alkyl and aryl glyceryl monoethers catalysed by an engineered and immobilised glycerol dehydrogenase. Chemical Science, 2020, 11, 12009-12020.	7.4	9
11	Steps Forward toward the Substitution of Conventional Solvents in the Heck–Mizoroki Coupling Reaction: Glycerol-Derived Ethers and Deep Eutectic Solvents as Reaction Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 13076-13084.	6.7	19
12	Unveiling the mechanism of hydrotropy: evidence for water-mediated aggregation of hydrotropes around the solute. Chemical Communications, 2020, 56, 7143-7146.	4.1	40
13	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	6.7	35
14	Glycerol-Derived Solvents: Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13004-13014.	6.7	27
15	Sulfonated Hydrothermal Carbons from Cellulose and Glucose as Catalysts for Glycerol Ketalization. Catalysts, 2019, 9, 804.	3.5	15
16	Optimization of the Synthesis of Glycerol Derived Monoethers from Glycidol by Means of Heterogeneous Acid Catalysis. Molecules, 2018, 23, 2887.	3.8	9
17	Synthetic Transformations for the Valorization of Fatty Acid Derivatives. Synthesis, 2017, 49, 1444-1460.	2.3	42
18	Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere, 2017, 183, 277-285.	8.2	36

Elisabet Pires

#	Article	IF	CITATIONS
19	Glycerol as a source of designer solvents: physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts. Physical Chemistry Chemical Physics, 2017, 19, 28302-28312.	2.8	37
20	Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon, 2017, 123, 421-432.	10.3	88
21	Synthesis of 3-alkoxypropan-1,2-diols from glycidol: experimental and theoretical studies for the optimization of the synthesis of glycerol derived solvents. Green Chemistry, 2017, 19, 4176-4185.	9.0	24
22	Comparative ecotoxicity study of glycerol-biobased solvents. Environmental Chemistry, 2017, 14, 370.	1.5	13
23	Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids: Comparison with sulfonic solids of different nature. Journal of Catalysis, 2015, 324, 107-118.	6.2	66
24	Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents. Green Chemistry, 2015, 17, 4326-4333.	9.0	35
25	Impact of sulfonated hydrothermal carbon texture and surface chemistry on its catalytic performance in esterification reaction. Catalysis Today, 2015, 249, 153-160.	4.4	38
26	Biobased catalyst in biorefinery processes: sulphonated hydrothermal carbon for glycerol esterification. Catalysis Science and Technology, 2015, 5, 2897-2903.	4.1	38
27	4.20 Addition of Ketocarbenes to Alkenes, Alkynes, and Aromatic Systems. , 2014, , 1081-1280.		2
28	Glycerol based solvents: synthesis, properties and applications. Green Chemistry, 2014, 16, 1007-1033.	9.0	229
29	New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon, 2014, 77, 1157-1167.	10.3	55
30	Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catalysis Today, 2012, 195, 76-82.	4.4	20
31	Predicting the Enantioselectivity of the Copper atalysed Cyclopropanation of Alkenes by Using Quantitative Quadrantâ€Diagram Representations of the Catalysts. Chemistry - A European Journal, 2012, 18, 14026-14036.	3.3	39
32	Glycerol ketals: Synthesis and profits in biodiesel blends. Fuel, 2012, 94, 614-616.	6.4	61
33	A highly efficient, green and recoverable catalytic system for the epoxidation of fatty esters and biodiesel with H2O2. Applied Catalysis A: General, 2012, 425-426, 91-96.	4.3	25
34	Fatty acid derivatives and their use as CFPP additives in biodiesel. Bioresource Technology, 2011, 102, 2590-2594.	9.6	42
35	The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Applied Catalysis A: General, 2010, 387, 67-74.	4.3	40
36	Heterogenization on Inorganic Supports: Methods and Applications. Catalysis By Metal Complexes, 2010, , 65-121.	0.6	6

ELISABET PIRES

#	Article	IF	CITATIONS
37	Beyond reuse in chiral immobilized catalysis: The bis(oxazoline) case. Catalysis Today, 2009, 140, 44-50.	4.4	31
38	The influence of alkaline metals on the strong basicity of Mg–Al mixed oxides: The case of transesterification reactions. Applied Catalysis A: General, 2009, 364, 87-94.	4.3	80
39	Enantioselective catalysis with chiral complexes immobilized on nanostructured supports. Chemical Society Reviews, 2009, 38, 695-706.	38.1	134
40	Surface confinement effects in enantioselective catalysis: Design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and their application in cyclopropanation reactions. Journal of Catalysis, 2008, 258, 378-385.	6.2	44
41	QM/MM Modeling of Enantioselective Pybox–Ruthenium- and Box–Copper-Catalyzed Cyclopropanation Reactions: Scope, Performance, and Applications to Ligand Design. Chemistry - A European Journal, 2007, 13, 4064-4073.	3.3	43
42	<i>C</i> ₁ â€Symmetric Versus <i>C</i> ₂ â€Symmetric Ligands in Enantioselective Copper–Bis(oxazoline)â€Catalyzed Cyclopropanation Reactions. Chemistry - A European Journal, 2007, 13, 8830-8839.	3.3	50
43	Synthesis of non-symmetric bisoxazoline compounds. An easy way to reach tailored chiral ligands. Tetrahedron: Asymmetry, 2006, 17, 2270-2275.	1.8	19
44	An Efficient and General One-Pot Method for the Synthesis of Chiral Bis(oxazoline) and Pyridine Bis(oxazoline) Ligands. Synlett, 2005, 2005, 2321-2324.	1.8	9
45	An Efficient One-Pot Synthesis of Phenol Derivatives by Ring Opening and Rearrangement of Diels-Alder Cycloadducts of Substituted Furans Using Heterogeneous Catalysis and Microwave Irradiation. Synlett, 2004, 2004, 1259-1263.	1.8	18
46	An Efficient One-Pot Synthesis of Phenol Derivatives by Ring Opening and Rearrangement of Diels—Alder Cycloadducts of Substituted Furans Using Heterogeneous Catalysis and Microwave Irradiation ChemInform, 2004, 35, no.	0.0	0
47	On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study. Journal of Physical Chemistry B, 1999, 103, 1664-1670.	2.6	12
48	Title is missing!. Catalysis Letters, 1998, 51, 235-239.	2.6	2
49	High-resolution NMR studies of methyl acrylate adsorbed on silica and TiCl4-modified silica. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1981-1985.	1.7	1
50	Structure and relative Lewis acidity of the catalytic sites of an aluminium-modified silica gel A theoretical study. Journal of Molecular Catalysis A, 1997, 119, 95-103.	4.8	5
51	ZnCl2, ZnI2 and TiCl4 supported on silica gel as catalysts for the Diels-Alder reactions of furan. Journal of Molecular Catalysis A, 1997, 123, 43-47.	4.8	20
52	First Asymmetric Dielsâ^'Alder Reactions of Furan and Chiral Acrylates. Usefulness of Acid Heterogeneous Catalysts. Journal of Organic Chemistry, 1996, 61, 9479-9482.	3.2	47
53	AlPO4catalyzed Diels-Alder reaction of cyclopentadiene with (-)-menthyl acrylate. Influence of catalyst surface properties. Catalysis Letters, 1996, 36, 215-221.	2.6	12
54	Comparison of AlEt2Cl and ZnCl2 supported on silica gel as catalysts of Diels-Alder reactions. Influence of the nature of the dienophile. Catalysis Letters, 1996, 37, 261-266.	2.6	11

ELISABET PIRES

#	Article	IF	CITATIONS
55	Heterogeneous activation of Diels-Alder reactions of non-chiral and chiral (E)-2-cyanocinnamates. Applied Catalysis A: General, 1996, 136, 113-123.	4.3	12
56	Diels-Alder reactions of (E)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylen]-5(4H)-oxazolone with heterogeneous catalysts. Tetrahedron: Asymmetry, 1996, 7, 2391-2398.	1.8	19
57	The use of heterogeneous catalysis in Diels-Alder reactions of N-acetyl-α,β-dehydroalaninates. Tetrahedron, 1995, 51, 1295-1300.	1.9	31
58	(Z)- and (E)-2-phenyl-4-benzylidene-5(4H)-oxazolones as dienophiles. Improved selectivity by the use of heterogeneous catalysts. Tetrahedron, 1995, 51, 9217-9222.	1.9	17
59	Diels-Alder reactions of α-amino acid precursors by heterogeneous catalysis: Thermal vs. microwave activation. Applied Catalysis A: General, 1995, 131, 159-166.	4.3	20
60	Diels-Alder Condensation of Methyl and (-)-Menthyl Acrylates with Cyclopentadiene over Zeolites and Cation Exchanged Clays. Studies in Surface Science and Catalysis, 1994, , 391-398.	1.5	8
61	Heterogeneous catalysis of asymmetric Diels—Alder reactions. Journal of Molecular Catalysis, 1994, 89, 159-164.	1.2	6
62	Relationship between solvent effects and catalyst activation method in a clay-catalysed Diels—Alder reaction. Journal of Molecular Catalysis, 1993, 79, 305-310.	1.2	10
63	Comparison of the catalytic properties of protonic zeolites and exchanged clays for Diels-Alder synthesis. Applied Catalysis A: General, 1993, 101, 253-267.	4.3	50
64	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of carbonyl-containing dienophiles. Tetrahedron, 1993, 49, 4073-4084.	1.9	46
65	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 621-624.	1.8	33
66	K10 Montmorillonites as catalysts in Diels-Alder reactions: influence of the exchanged cation. Studies in Surface Science and Catalysis, 1993, , 495-502.	1.5	6
67	Effect of clay calcination on clay-catalysed Diels-Alder reactions of cyclopentadiene with methyl and (â^')-menthyl acrylates. Tetrahedron, 1992, 48, 6467-6476.	1.9	32