Chang-Gu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577074/publications.pdf Version: 2024-02-01

CHANC-CULLEE

#	Article	IF	CITATIONS
1	Effectivity and adsorption mechanism of food waste biochar for triclosan removal: a spectroscopic and experimental approach. Biomass Conversion and Biorefinery, 2023, 13, 11067-11083.	2.9	4
2	pH-dependent contribution of chlorine monoxide radicals and byproducts formation during UV/chlorine treatment on clothianidin. Chemical Engineering Journal, 2022, 428, 132444.	6.6	17
3	Restoring phosphorus from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer. Chemosphere, 2022, 287, 132267.	4.2	28
4	Phosphorus recovery from cattle manure bottom ash by extraction and precipitation methods. Environmental Science and Pollution Research, 2022, 29, 39567-39577.	2.7	5
5	Removal of phosphorus from water using calcium-rich organic waste and its potential as a fertilizer for rice growth. Journal of Environmental Chemical Engineering, 2022, 10, 107367.	3.3	12
6	Contamination of typical phthalate acid esters in surface water and sediment of the Pearl River, South China: Occurrence, distribution, and health risk assessment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 130-138.	0.9	3
7	Application of calcium-rich mineral under nonwoven fabric mats and sand armor as cap layer for interrupting N and P release from river sediments. Environmental Science and Pollution Research, 2022, 29, 59444-59455.	2.7	3
8	Application of response surface methodology and artificial neural network for the preparation of Fe-loaded biochar for enhanced Cr(VI) adsorption and its physicochemical properties and Cr(VI) adsorption characteristics. Environmental Science and Pollution Research, 2022, 29, 60852-60866.	2.7	10
9	Conversion of Organic Waste to Novel Adsorbent for Fluoride Removal: Efficacy and Mechanism of Fluoride Adsorption by Calcined Venerupis philippinarum Shells. Water, Air, and Soil Pollution, 2022, 233, .	1.1	10
10	As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. Environmental Geochemistry and Health, 2021, 43, 3303-3321.	1.8	20
11	Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism. Chemosphere, 2021, 263, 128328.	4.2	43
12	Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology. Microporous and Mesoporous Materials, 2021, 312, 110764.	2.2	41
13	Simple preparation method for Styrofoam–TiO ₂ composites and their photocatalytic application for dye oxidation and Cr(<scp>vi</scp>) reduction in industrial wastewater. Environmental Science: Water Research and Technology, 2021, 7, 222-230.	1.2	9
14	Recycling of bottom ash derived from combustion of cattle manure and its adsorption behaviors for Cd(II), Cu(II), Pb(II), and Ni(II). Environmental Science and Pollution Research, 2021, 28, 14957-14968.	2.7	13
15	Fluoride removal by thermally treated egg shells with high adsorption capacity, low cost, and easy acquisition. Environmental Science and Pollution Research, 2021, 28, 35887-35901.	2.7	29
16	Nitrate removal by quaternized mesoporous silica gel in ternary anion solutions: Flow-through column experiments and artificial neural network modeling. Journal of Water Process Engineering, 2021, 41, 102067.	2.6	3
17	Effect of pyrolysis conditions on food waste conversion to biochar as a coagulant aid for wastewater treatment. Journal of Water Process Engineering, 2021, 41, 102081.	2.6	9
18	Enhanced sonocatalytic degradation of bisphenol A with a magnetically recoverable biochar composite using rice husk and rice bran as substrate. Journal of Environmental Chemical Engineering, 2021, 9, 105284.	3.3	31

#	Article	IF	CITATIONS
19	Bisphenol A degradation using waste antivirus copper film with enhanced sono-Fenton-like catalytic oxidation. Chemosphere, 2021, 276, 130218.	4.2	29
20	Fe-loaded biochar obtained from food waste for enhanced phosphate adsorption and its adsorption mechanism study via spectroscopic and experimental approach. Journal of Environmental Chemical Engineering, 2021, 9, 105751.	3.3	45
21	Conversion of cattle manure into functional material to remove selenate from wastewater. Chemosphere, 2021, 278, 130398.	4.2	28
22	Removal of Heavy Metals (Cd2+, Cu2+, Ni2+, Pb2+) from Aqueous Solution Using Hizikia fusiformis as an Algae-Based Bioadsorbent. Applied Sciences (Switzerland), 2021, 11, 8604.	1.3	12
23	Ultrasound-activated peroxydisulfate process with copper film to remove bisphenol A: Operational parameter impact and back propagation-artificial neural network modeling. Journal of Water Process Engineering, 2021, 44, 102326.	2.6	13
24	Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost. Applied Sciences (Switzerland), 2021, 11, 431.	1.3	5
25	Application of Fe-Impregnated Biochar from Cattle Manure for Removing Pentavalent Antimony from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 9257.	1.3	4
26	New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. Journal of Cleaner Production, 2021, 328, 129536.	4.6	22
27	Degradation of Oxytetracycline by Persulfate Activation Using a Magnetic Separable Iron Oxide Catalyst Derived from Hand-Warmer Waste. Applied Sciences (Switzerland), 2021, 11, 10447.	1.3	3
28	Numerical modelling for effect of water curtain in mitigating toxic gas release. Journal of Loss Prevention in the Process Industries, 2020, 63, 103972.	1.7	8
29	Experimental and model study for fluoride removal by thermally activated sepiolite. Chemosphere, 2020, 241, 125094.	4.2	46
30	Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity. Chemical Engineering Journal, 2020, 402, 126183.	6.6	70
31	Bi-Polymer Electrospun Nanofibers Embedding Ag3PO4/P25 Composite for Efficient Photocatalytic Degradation and Anti-Microbial Activity. Catalysts, 2020, 10, 784.	1.6	5
32	Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment. Environmental Science and Pollution Research, 2020, 27, 41688-41701.	2.7	22
33	Catalytic Pyrolysis as a Technology to Dispose of Herbal Medicine Waste. Catalysts, 2020, 10, 826.	1.6	14
34	Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. Biotechnology and Bioprocess Engineering, 2020, 25, 646-654.	1.4	12
35	Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution. Applied Sciences (Switzerland), 2020, 10, 6710.	1.3	20
36	Pyrolysis of Polyethylene Terephthalate over Carbon-Supported Pd Catalyst. Catalysts, 2020, 10, 496.	1.6	36

#	Article	lF	CITATIONS
37	Removal of Cu(II) from Aqueous Solutions Using Amine-Doped Polyacrylonitrile Fibers. Applied Sciences (Switzerland), 2020, 10, 1738.	1.3	8
38	The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar. Applied Sciences (Switzerland), 2020, 10, 2251.	1.3	55
39	Use of calcined sepiolite in removing phosphate from water and returning phosphate to soil as phosphorus fertilizer. Journal of Environmental Management, 2020, 270, 110817.	3.8	36
40	Evaluating effectiveness of dust by-product treatment with scrubbers to mitigate explosion risk in ZrO2 atomic layer deposition process. Journal of Hazardous Materials, 2020, 400, 123284.	6.5	1
41	Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. Journal of Water Process Engineering, 2020, 37, 101455.	2.6	76
42	Comparison of capping and mixing of calcined dolomite and zeolite for interrupting the release of nutrients from contaminated lake sediment. Environmental Science and Pollution Research, 2020, 27, 15045-15056.	2.7	9
43	A Hybrid Ion-Exchange Fabric/Ceramic Membrane System to Remove As(V), Zn(II), and Turbidity from Wastewater. Applied Sciences (Switzerland), 2020, 10, 2414.	1.3	7
44	Synthesis of Fe-impregnated biochar from food waste for Selenium(â¥) removal from aqueous solution through adsorption: Process optimization and assessment. Chemosphere, 2020, 252, 126475.	4.2	61
45	Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis. Chemosphere, 2020, 248, 126043.	4.2	42
46	Nascent Rice Husk as an Adsorbent for Removing Cationic Dyes from Textile Wastewater. Applied Sciences (Switzerland), 2020, 10, 3437.	1.3	53
47	Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment. Environmental Technology (United Kingdom), 2019, 40, 3479-3491.	1.2	12
48	Production of Biochar from Food Waste and its Application for Phenol Removal from Aqueous Solution. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	58
49	Effect of temperature on capping efficiency of zeolite and activated carbon under fabric mats for interrupting nutrient release from sediments. Scientific Reports, 2019, 9, 15754.	1.6	8
50	The feasibility of using bentonite, illite, and zeolite as capping materials to stabilize nutrients and interrupt their release from contaminated lake sediments. Chemosphere, 2019, 219, 217-226.	4.2	48
51	Synthesis of an oxidized mesoporous carbon-based magnetic composite and its application for heavy metal removal from aqueous solutions. Microporous and Mesoporous Materials, 2019, 279, 45-52.	2.2	24
52	Water and soil properties in organic and conventional paddies throughout the rice cultivation cycle in South Korea. Environmental Engineering Research, 2019, 24, 45-53.	1.5	5
53	Porous Electrospun Fibers Embedding TiO ₂ for Adsorption and Photocatalytic Degradation of Water Pollutants. Environmental Science & Technology, 2018, 52, 4285-4293.	4.6	286
54	Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column. Environmental Technology (United Kingdom), 2018, 39, 616-627.	1.2	8

#	Article	IF	CITATIONS
55	Phosphorous recovery from sewage sludge using calcium silicate hydrates. Chemosphere, 2018, 193, 1087-1093.	4.2	77
56	Easily Recoverable, Micrometer-Sized TiO ₂ Hierarchical Spheres Decorated with Cyclodextrin for Enhanced Photocatalytic Degradation of Organic Micropollutants. Environmental Science & Technology, 2018, 52, 12402-12411.	4.6	71
57	Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon, 2018, 140, 441-448.	5.4	67
58	Scaled-Down Experiments and Numerical Simulations for the Design of a Retention Tank with Rotatable Bucket. Journal of Environmental Engineering, ASCE, 2018, 144, 04018092.	0.7	0
59	Application of a nanofibrous composite membrane to the fertilizer-driven forward osmosis process for irrigation water use. Environmental Technology (United Kingdom), 2017, 38, 2700-2708.	1.2	4
60	Evaluation of sediment capping with activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments. Science of the Total Environment, 2017, 599-600, 413-421.	3.9	44
61	Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 2017, 325, 223-229.	6.5	159
62	Application of Thermally Treated Crushed Concrete Granules for the Removal of Phosphate: A Cheap Adsorbent with High Adsorption Capacity. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	22
63	Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 2017, 166, 203-211.	4.2	152
64	Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents. Desalination and Water Treatment, 2016, 57, 28323-28339.	1.0	30
65	Evaluation of the Use of Sea Sand, Crushed Concrete, and Bentonite to Stabilize Trace Metals and to Interrupt Their Release from Contaminated Marine Sediments. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	20
66	Removal and Recovery of Cr(VI) from Industrial Plating Wastewater Using Fibrous Anion Exchanger. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	12
67	Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticleâ€Multiâ€Walled Carbon Nanotube Adsorbents. Water Environment Research, 2016, 88, 2111-2120.	1.3	16
68	Determination of optimum isotherm and kinetic models for phosphate sorption onto iron oxide nanoparticles: nonlinear regression with various error functions. Desalination and Water Treatment, 2016, 57, 3107-3118.	1.0	2
69	Functionalization of activated carbon fiber through iron oxide impregnation for As(V) removal: equilibrium, kinetic, and thermodynamic analyses. Desalination and Water Treatment, 2016, 57, 10757-10766.	1.0	1
70	Surface functionalization of mesoporous silica MCM-41 with 3-aminopropyltrimethoxysilane for dye removal: kinetic, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 7066-7078.	1.0	26
71	Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent. Chemosphere, 2016, 153, 1-9.	4.2	57
72	Analysis of phosphate removal from aqueous solutions by hydrocalumite. Desalination and Water Treatment, 2016, 57, 21476-21486.	1.0	5

#	Article	IF	CITATIONS
73	Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal. Journal of Hazardous Materials, 2016, 302, 375-385.	6.5	24
74	Ammonium-functionalized mesoporous silica MCM-41 for phosphate removal from aqueous solutions. Desalination and Water Treatment, 2016, 57, 10839-10849.	1.0	17
75	Effective regeneration of an adsorbent for the removal of organic contaminants developed based on UV radiation and toxicity evaluation. Reactive and Functional Polymers, 2015, 95, 62-70.	2.0	22
76	Bimetallic oxide-coated sand filter for simultaneous removal of bacteria, Fe(II), and Mn(II) in small- and pilot-scale column experiments. Desalination and Water Treatment, 2015, 54, 3380-3391.	1.0	10
77	Influence of As(V) on bacteriophage MS2 removal by hematite in aqueous solutions. Desalination and Water Treatment, 2015, 56, 760-769.	1.0	3
78	Applicability and toxicity evaluation of an adsorbent based on jujube for the removal of toxic heavy metals. Reactive and Functional Polymers, 2015, 93, 138-147.	2.0	21
79	Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin. Chemosphere, 2015, 130, 59-65.	4.2	69
80	Comparative analysis of fixed-bed sorption models using phosphate breakthrough curves in slag filter media. Desalination and Water Treatment, 2015, 55, 1795-1805.	1.0	52
81	Phosphate sorption to quintinite in aqueous solutions: Kinetic, thermodynamic and equilibrium analyses. Environmental Engineering Research, 2015, 20, 73-78.	1.5	12
82	Lab-scale experiments and model analyses for bacterial removal in flow-through columns containing dolomite. Desalination and Water Treatment, 2014, 52, 6556-6566.	1.0	5
83	Pyrophyllite clay for bacteriophage MS2 removal in the presence of fluoride. Water Science and Technology: Water Supply, 2014, 14, 485-492.	1.0	5
84	Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1116-1124.	0.9	12
85	Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical Engineering Journal, 2014, 236, 341-347.	6.6	327
86	Magnetic alginate-layered double hydroxide composites for phosphate removal. Environmental Technology (United Kingdom), 2013, 34, 2749-2756.	1.2	16
87	Use of pyrophyllite clay for fluoride removal from aqueous solution. Desalination and Water Treatment, 2013, 51, 3408-3416.	1.0	24
88	Removal of Cr(VI) from aqueous solution using alginate/polyvinyl alcohol–hematite composite. Desalination and Water Treatment, 2013, 51, 3438-3444.	1.0	13
89	Use of converter furnace steel slag for bacteria removal in flow-through columns. Desalination and Water Treatment, 2013, 51, 7681-7689.	1.0	1

Adhesion of bacteria to pyrophyllite clay in aqueous solution. Environmental Technology (United) Tj ETQq000 rgBT [Overlock 10 Tf 50 error 19]

#	Article	IF	CITATIONS
91	Fluoride removal using calcined Mg/Al layered double hydroxides at high fluoride concentrations. Water Science and Technology: Water Supply, 2013, 13, 249-256.	1.0	11
92	Preparation of magnetic alginate–layered double hydroxide composite adsorbents and removal of Cr(VI) from aqueous solution. Water Science and Technology: Water Supply, 2013, 13, 846-853.	1.0	5
93	Bacteriophage removal by Ni/Al layered double hydroxide in batch and flow-through column experiments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 2060-2068.	0.9	2
94	Bacterial removal in flow-through columns packed with iron-manganese bimetallic oxide-coated sand. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1364-1371.	0.9	5
95	Phosphate removal from aqueous solutions using slag microspheres. Desalination and Water Treatment, 2012, 44, 229-236.	1.0	21
96	Immobilization of Layered Double Hydroxide into Polyvinyl Alcohol/Alginate Hydrogel Beads for Phosphate Removal. Environmental Engineering Research, 2012, 17, 133-138.	1.5	23
97	Entrapment of Mg-Al layered double hydroxide in calcium alginate beads for phosphate removal from aqueous solution. Desalination and Water Treatment, 2011, 36, 178-186.	1.0	34
98	Removal of bacteriophage MS2 from aqueous solution using Mg-Fe layered double hydroxides. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1683-1689.	0.9	5
99	Influence of Surfactants on Bacterial Adhesion to Metal Oxide-Coated Surfaces. Environmental Engineering Research, 2011, 16, 219-225.	1.5	9
100	Bacterial Attachment and Detachment in Aluminumâ€Coated Quartz Sand in Response to Ionic Strength Change. Water Environment Research, 2010, 82, 499-505.	1.3	13
101	Arsenic removal from water using iron-impregnated granular activated carbon in the presence of bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 177-182.	0.9	15
102	Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media. Environmental Engineering Research, 2010, 15, 149-156.	1.5	12
103	The role of phosphate in bacterial interaction with iron-coated surfaces. Colloids and Surfaces B: Biointerfaces, 2009, 68, 79-82.	2.5	16
104	Bacterial attachment to iron-impregnated granular activated carbon. Colloids and Surfaces B: Biointerfaces, 2009, 74, 196-201.	2.5	11
105	Humic Acid Removal from Water by Iron-coated Sand: A Column Experiment. Environmental Engineering Research, 2009, 14, 41-47.	1.5	8
106	Transport and retention of <i>Escherichia coli</i> in a mixture of quartz, Alâ€coated and Feâ€coated sands. Hydrological Processes, 2008, 22, 3856-3863.	1.1	35
107	Bacteria transport through goethite-coated sand: Effects of solution pH and coated sand content. Colloids and Surfaces B: Biointerfaces, 2008, 63, 236-242.	2.5	64
108	Determination of bacterial mass recovery in iron-coated sand: Influence of ionic strength. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1108-1114.	0.9	5

#	Article	IF	CITATIONS
109	Quantification of Bacterial Attachment-related Parameters in Porous Media. Environmental Engineering Research, 2008, 13, 141-146.	1.5	8
110	Characterization of magnetic zeolite-polymer composites for Cu(II) and Cr(III) removal from aqueous solutions. , 0, 67, 261-270.		2
111	Thermal treatment of attapulgite for phosphate removal: A cheap and natural adsorbent with high adsorption capacity. , 0, 114, 174-184.		11
112	Characterization of anion exchange fiber for simultaneous removal of Cr(VI) and As(V) in mineral processing wastewater. , 0, 135, 247-257.		2
113	Removal of fluoride from water using thermally treated dolomite and optimization of experimental conditions using response surface methodology. , 0, 155, 311-320.		19
114	Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell. , 0, 177, 71-79.		16
115	Removal of triclosan from aqueous solution using thermally treated rice husks. , 0, 202, 317-326.		9
116	Illite for the removal of E. coli by filtration in water treatment processes: a comparative study. , 0, 163, 270-280.		0