Bing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576701/publications.pdf Version: 2024-02-01

RINCLI

#	Article	IF	CITATIONS
1	Effect of freeze–thaw cycles on the molecular weight and size distribution of gluten. Food Research International, 2013, 53, 409-416.	6.2	81
2	Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests. Journal of Agricultural and Food Chemistry, 2017, 65, 5778-5788.	5.2	60
3	Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Food Research International, 2017, 102, 313-322.	6.2	55
4	Effect of Frozen Storage on Molecular Weight, Size Distribution and Conformation of Gluten by SAXS and SEC-MALLS. Molecules, 2012, 17, 7169-7182.	3.8	53
5	Shellac: A promising natural polymer in the food industry. Trends in Food Science and Technology, 2021, 109, 139-153.	15.1	53
6	The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Critical Reviews in Food Science and Nutrition, 2020, 60, 3475-3491.	10.3	49
7	Glyoxal derived from triglyceride participating in diet-derived NÎμ-carboxymethyllysine formation. Food Research International, 2013, 51, 836-840.	6.2	30
8	In Vitro Gastrointestinal Digestibility of Crystalline Oil-in-Water Emulsions: Influence of Fat Crystal Structure. Journal of Agricultural and Food Chemistry, 2019, 67, 927-934.	5.2	28
9	Reduction of Nε-(carboxymethyl) lysine by (â^')-epicatechin and (â^')-epigallocatechin gallate: The involvement of a possible trapping mechanism by catechin quinones. Food Chemistry, 2018, 266, 427-434.	8.2	27
10	Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS Nano, 2021, 15, 18794-18821.	14.6	22
11	Degradation of Peptide-Bound Maillard Reaction Products in Gastrointestinal Digests of Glyoxal-Glycated Casein by Human Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2019, 67, 12094-12104.	5.2	21
12	In Vitro Gastrointestinal Digestion of Palm Olein and Palm Stearin-in-Water Emulsions with Different Physical States and Fat Contents. Journal of Agricultural and Food Chemistry, 2020, 68, 7062-7071.	5.2	20
13	Optimization of Pretreatment for Free and Bound Nε-(carboxymethyl)lysine Analysis in Soy Sauce. Food Analytical Methods, 2015, 8, 195-202.	2.6	16
14	Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: Adsorption and reduction. Journal of Environmental Management, 2021, 277, 111386.	7.8	16
15	Kinetic investigation of the trapping of NÎμ-(carboxymethyl)lysine by 4-methylbenzoquinone: A new mechanism to control NÎμ-(carboxymethyl)lysine levels in foods. Food Chemistry, 2018, 244, 25-28.	8.2	15
16	Effect of Xanthan Gum on the Freeze-Thaw Stability of Wheat Gluten. Food Biophysics, 2019, 14, 142-153.	3.0	11
17	Quantifying the efficiency of o-benzoquinones reaction with amino acids and related nucleophiles by cyclic voltammetry. Food Chemistry, 2020, 317, 126454.	8.2	11
18	The interfacial digestion behavior of crystalline oil-in-water emulsions stabilized by sodium caseinate during in vitro gastrointestinal digestion. Food Hydrocolloids, 2022, 130, 107734.	10.7	10

Bing Li

#	Article	IF	CITATIONS
19	Kinetic Study on Peptideâ€Bound Pyrraline Formation and Elimination in the Maillard Reaction Using Single―and Multipleâ€Response Models. Journal of Food Science, 2016, 81, C2405-C2424.	3.1	9
20	Study of reactions of Nε-(carboxymethyl) lysine with o-benzoquinones by cyclic voltammetry. Food Chemistry, 2020, 307, 125554.	8.2	6
21	Selective transportation and energy homeostasis regulation of dietary advanced glycation end-products in human intestinal Caco-2 cells. Food Chemistry, 2022, 391, 133284.	8.2	3
22	Artificial Neural Network Based Software Sensor for Yeast Biomass Concentration during Industrial Production. , 2006, , .		1
23	Two Dipeptide-Bound Pyrralines with Ile or Ala: A Study on Their Synthesis, Transport across Caco-2 Cell Monolayers, and Interaction with Aminopeptidase N. Journal of Agricultural and Food Chemistry, 2021, 69, 10962-10973.	5.2	1
24	Insight on a Competitive Nucleophilic Addition Reaction of Nε-(Carboxymethyl) Lysine or Different Amino Acids with 4-Methylbenzoquinone. Foods, 2022, 11, 1421.	4.3	0