SÃ³nia A C Carabineiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of high-quality forest wood biomass using artificial intelligence to control thermal modification. Biomass Conversion and Biorefinery, 2024, 14, 1731-1747.	2.9	0
2	Chicken feathers derived materials for the removal of chromium from aqueous solutions: kinetics, isotherms, thermodynamics and regeneration studies. Journal of Dispersion Science and Technology, 2022, 43, 446-460.	1.3	9
3	Synthesis, characterization and antibacterial activity of a graphene oxide based NiO and starch composite material. Journal of Dispersion Science and Technology, 2022, 43, 559-571.	1.3	2
4	Multifunctional hybrid membranes for photocatalytic and adsorptive removal of water contaminants of emerging concern. Chemosphere, 2022, 293, 133548.	4.2	14
5	Commercial Gold Complexes Supported on Functionalised Carbon Materials as Efficient Catalysts for the Direct Oxidation of Ethane to Acetic Acid. Catalysts, 2022, 12, 165.	1.6	0
6	Construction of Agâ€Bridged Zâ€Scheme LaFe _{0.5} Co _{0.5} O ₃ /Ag ₁₀ /Graphitic Carbon Nitride Heterojunctions for Photoâ€Fenton Degradation of Tetracycline Hydrochloride: Interfacial Electron Effect and Reaction Mechanism. Advanced Materials Interfaces, 2022, 9, .	1.9	9
7	Templated Synthesis of Mesoporous Co ₃ O ₄ Nanostructures for the Liquid-Phase Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde. ACS Applied Nano Materials, 2022, 5, 3722-3732.	2.4	8
8	Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Applied Catalysis A: General, 2022, 635, 118554.	2.2	8
9	Heterogeneous Gold Nanoparticle-Based Catalysts for the Synthesis of Click-Derived Triazoles via the Azide-Alkyne Cycloaddition Reaction. Catalysts, 2022, 12, 45.	1.6	12
10	Immobilization and Characterization of L-Asparaginase over Carbon Xerogels. BioTech, 2022, 11, 10.	1.3	4
11	Oxygen vacancies-induced photoreactivity enhancement of TiO2 mesocrystals towards acetone oxidation. Applied Surface Science, 2022, 594, 153519.	3.1	16
12	Research progress in metal sulfides for photocatalysis: From activity to stability. Chemosphere, 2022, 303, 135085.	4.2	46
13	Liquid-phase oxidation of betulin over supported Ag NPs catalysts: Kinetic regularities, catalyst deactivation and reactivation. Molecular Catalysis, 2022, 528, 112461.	1.0	3
14	Catalytic oxidative transformation of betulin to its valuable oxo-derivatives over gold supported catalysts: Effect of support nature. Catalysis Today, 2021, 367, 95-110.	2.2	8
15	Control of surface functionalization of graphene-metal oxide polymer nanocomposites prepared by a hydrothermal method. Polymer Bulletin, 2021, 78, 4665-4683.	1.7	5
16	Kinetics of Carbon Nanotubes and Graphene Growth on Iron and Steel: Evidencing the Mechanisms of Carbon Formation. Nanomaterials, 2021, 11, 143.	1.9	8
17	Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts, 2021, 11, 115.	1.6	20
18	The Catalytic Activity of Carbon-Supported Cu(I)-Phosphine Complexes for the Microwave-Assisted Synthesis of 1,2,3-Triazoles. Catalysts, 2021, 11, 185.	1.6	17

#	Article	IF	CITATIONS
19	Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. Journal of CO2 Utilization, 2021, 44, 101408.	3.3	26
20	Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials, 2021, 11, 469.	1.9	3
21	Methionine-Functionalized Graphene Oxide/Sodium Alginate Bio-Polymer Nanocomposite Hydrogel Beads: Synthesis, Isotherm and Kinetic Studies for an Adsorptive Removal of Fluoroquinolone Antibiotics. Nanomaterials, 2021, 11, 568.	1.9	40
22	Green Chemistry and Environmental Processes. Catalysts, 2021, 11, 643.	1.6	0
23	Calcium Alginate Beads with Entrapped Iron Oxide Magnetic Nanoparticles Functionalized with Methionine—A Versatile Adsorbent for Arsenic Removal. Nanomaterials, 2021, 11, 1345.	1.9	17
24	Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. Journal of Hazardous Materials, 2021, 409, 124840.	6.5	150
25	Oxido- and Dioxido-Vanadium(V) Complexes Supported on Carbon Materials: Reusable Catalysts for the Oxidation of Cyclohexane. Nanomaterials, 2021, 11, 1456.	1.9	7
26	Shape Effects of Ceria Nanoparticles on the Water‒Gas Shift Performance of CuOx/CeO2 Catalysts. Catalysts, 2021, 11, 753.	1.6	12
27	Effect of the Metal Deposition Order on Structural, Electronic and Catalytic Properties of TiO2-Supported Bimetallic Au-Ag Catalysts in 1-Octanol Selective Oxidation. Catalysts, 2021, 11, 799.	1.6	1
28	Solochrome Dark Blue Azo Dye Removal by Sonophotocatalysis Using Mn2+ Doped ZnS Quantum Dots. Catalysts, 2021, 11, 1025.	1.6	10
29	Synthesis of a Novel Series of Cu(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane as Homogeneous and Carbon-Supported Catalysts for the Synthesis of 1- and 2-Substituted-1,2,3-triazoles. Nanomaterials, 2021, 11, 2702.	1.9	15
30	Determination of the Chemical Composition of Eucalyptus spp. for Cellulosic Pulp Production. Forests, 2021, 12, 1649.	0.9	10
31	Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. Metals, 2021, 11, 1934.	1.0	7
32	Removal of Hydrophobic Contaminants from the Soil by Adsorption onto Carbon Materials and Microbial Degradation. Journal of Carbon Research, 2021, 7, 83.	1.4	9
33	Solvent-free oxidation of 1-phenylethanol catalysed by gold nanoparticles supported on carbon powder materials. Catalysis Today, 2020, 357, 22-31.	2.2	7
34	Commercial gold(III) complex supported on functionalized carbon materials as catalyst for cyclohexane hydrocarboxylation. Catalysis Today, 2020, 357, 39-45.	2.2	5
35	Hydroaminomethylation reaction as powerful tool for preparation of rhodium/phosphine-functionalized nanomaterials. Catalytic evaluation in styrene hydroformylation. Catalysis Today, 2020, 356, 456-463.	2.2	6
36	Three in one: atomically dispersed Na boosting the photoreactivity of carbon nitride towards NO oxidation. Chemical Communications, 2020, 56, 14195-14198.	2.2	64

#	Article	IF	CITATIONS
37	Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C, 2020, 117, 111281.	3.8	22
38	2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 2020, 41, 270-303.	8.3	214
39	Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes, 2020, 8, 1016.	1.3	8
40	Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts, 2020, 10, 1402.	1.6	9
41	Mechanisms of Carbon Nanotubes and Graphene Growth: Kinetics versus Thermodynamics. Journal of Carbon Research, 2020, 6, 67.	1.4	2
42	Remarkable efficiency of Ni supported on hydrothermally synthesized CeO2 nanorods for low-temperature CO2 hydrogenation to methane. Catalysis Communications, 2020, 142, 106036.	1.6	41
43	Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes. Catalysts, 2020, 10, 465.	1.6	7
44	Intensified elimination of aqueous heavy metal ions using chicken feathers chemically modified by a batch method. Journal of Molecular Liquids, 2020, 312, 113475.	2.3	24
45	Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in n-Octanol Oxidation. Nanomaterials, 2020, 10, 880.	1.9	11
46	Catalytic Properties of Graphene Oxide Synthesized by a "Green―Process for Efficient Abatement of Auramine-O Cationic Dye. Analytical Chemistry Letters, 2020, 10, 21-32.	0.4	11
47	One-pot synthesis of La–Fe–O@CN composites as photo-Fenton catalysts for highly efficient removal of organic dyes in wastewater. Ceramics International, 2020, 46, 10740-10747.	2.3	12
48	Cationic Dye Removal Using Novel Magnetic/Activated Charcoal/β-Cyclodextrin/Alginate Polymer Nanocomposite. Nanomaterials, 2020, 10, 170.	1.9	116
49	Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. Nanomaterials, 2020, 10, 151.	1.9	7
50	Chloramine-T/N-Bromosuccinimide/FeCl3/KIO3 Decorated Graphene Oxide Nanosheets and Their Antibacterial Activity. Nanomaterials, 2020, 10, 105.	1.9	18
51	Explaining Bamboo-Like Carbon Fiber Growth Mechanism: Catalyst Shape Adjustments above Tammann Temperature. Journal of Carbon Research, 2020, 6, 18.	1.4	11
52	Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Polymers, 2020, 12, 953.	2.0	18
53	Antimicrobial and Antibiofilm Properties of Fluorinated Polymers with Embedded Functionalized Nanodiamonds. ACS Applied Polymer Materials, 2020, 2, 5014-5024.	2.0	11
54	The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. Inorganics, 2020, 8, 49.	1.2	8

#	Article	IF	CITATIONS
55	Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots: Kinetic Study, Degradation Pathway and Influencing Factors. Nanomaterials, 2020, 10, 964.	1.9	37
56	Selective Spectrophotometric Method for the Determination of Mercury(II) in Water Samples. Analytical Chemistry Letters, 2020, 10, 654-666.	0.4	0
57	Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Frontiers in Chemistry, 2019, 7, 702.	1.8	77
58	Wastewater Treatment by Catalytic Wet Peroxidation Using Nano Gold-Based Catalysts: A Review. Catalysts, 2019, 9, 478.	1.6	16
59	Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts. Green Chemistry, 2019, 21, 3370-3382.	4.6	11
60	Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts, 2019, 9, 371.	1.6	58
61	Green Oxidation of <i>n</i> â€Octanol on Supported Nanogold Catalysts: Formation of Gold Active Sites under Combined Effect of Gold Content, Additive Nature and Redox Pretreatment. ChemCatChem, 2019, 11, 1549-1549.	1.8	0
62	Ceria Nanoparticles' Morphological Effects on the N2O Decomposition Performance of Co3O4/CeO2 Mixed Oxides. Catalysts, 2019, 9, 233.	1.6	16
63	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer, 2019, 169, 138-147.	1.8	51
64	Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications. ACS Applied Materials & Interfaces, 2019, 11, 46286-46295.	4.0	50
65	CO2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu). Nanomaterials, 2019, 9, 1739.	1.9	45
66	Green Oxidation ofnâ€Octanol on Supported Nanogold Catalysts: Formation of Gold Active Sites under Combined Effect of Gold Content, Additive Nature and Redox Pretreatment. ChemCatChem, 2019, 11, 1615-1624.	1.8	16
67	Optimization of N ₂ O decomposition activity of CuO–CeO ₂ mixed oxides by means of synthesis procedure and alkali (Cs) promotion. Catalysis Science and Technology, 2018, 8, 2312-2322.	2.1	32
68	Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 230, 18-28.	10.8	359
69	Heterogenized Câ€Scorpionate Iron(II) Complex on Nanostructured Carbon Materials as Recyclable Catalysts for Microwaveâ€Assisted Oxidation Reactions. ChemCatChem, 2018, 10, 1821-1828.	1.8	35
70	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1804-1813.	1.8	25
71	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1661-1662.	1.8	0
72	Dyeâ€containing wastewater treatment by photoâ€assisted wet peroxidation using Au nanosized catalysts. Journal of Chemical Technology and Biotechnology, 2018, 93, 3223-3232.	1.6	7

#	Article	IF	CITATIONS
73	Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Applied Surface Science, 2018, 458, 839-848.	3.1	38
74	Catalytic carbon gasification: Understanding catalyst-carbon contact and rate jump behavior with air. Fuel Processing Technology, 2018, 179, 313-318.	3.7	5
75	Wet peroxide oxidation of dye-containing wastewaters using nanosized Au supported on Al 2 O 3. Catalysis Today, 2017, 280, 165-175.	2.2	25
76	Orange II Degradation by Wet Peroxide Oxidation Using Au Nanosized Catalysts: Effect of the Support. Industrial & Engineering Chemistry Research, 2017, 56, 1988-1998.	1.8	6
77	Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4. Applied Surface Science, 2017, 401, 333-340.	3.1	63
78	Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. Journal of Colloid and Interface Science, 2017, 496, 141-149.	5.0	64
79	Solid-supported nitrogen acyclic carbene (SNAC) complexes of gold: Preparation and catalytic activity. Journal of Catalysis, 2017, 350, 97-102.	3.1	35
80	Supported Câ \in 6corpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chemistry - an Asian Journal, 2017, 12, 1915-1919.	1.7	23
81	Highly active and stable TiO2-supported Au nanoparticles for CO2 reduction. Catalysis Communications, 2017, 98, 52-56.	1.6	29
82	Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support. Journal of CO2 Utilization, 2017, 19, 247-256.	3.3	57
83	Catalytic decomposition of N2O on inorganic oxides: Εffect of doping with Au nanoparticles. Molecular Catalysis, 2017, 436, 78-89.	1.0	22
84	Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 2017, 46, 8649-8657.	1.6	55
85	Photocatalytic degradation of recalcitrant micropollutants by reusable Fe 3 O 4 /SiO 2 /TiO 2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345, 27-35.	2.0	52
86	Supported Gold Nanoparticles as Reusable Catalysts for Oxidation Reactions of Industrial Significance. ChemCatChem, 2017, 9, 1211-1221.	1.8	44
87	Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applications. Composites Part B: Engineering, 2017, 111, 37-44.	5.9	52
88	Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane. Applied Catalysis A: General, 2017, 547, 124-131.	2.2	25
89	Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Applied Catalysis B: Environmental, 2017, 219, 92-100.	10.8	150
90	High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Composites Science and Technology, 2017, 153, 241-252.	3.8	86

#	Article	IF	CITATIONS
91	Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorganica Chimica Acta, 2017, 455, 473-482.	1.2	33
92	Gold Nanoparticles Deposited on Surface Modified Carbon Xerogels as Reusable Catalysts for Cyclohexane C-H Activation in the Presence of CO and Water. Molecules, 2017, 22, 603.	1.7	21
93	Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules, 2017, 22, 857.	1.7	95
94	Impact of the synthesis parameters on the solid state properties and the CO oxidation performance of ceria nanoparticles. RSC Advances, 2017, 7, 6160-6169.	1.7	67
95	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	1.7	29
96	Kinetics and mechanism of catalytic carbon gasification. Fuel, 2016, 183, 457-469.	3.4	64
97	Oxidovanadium(V) Complexes Anchored on Carbon Materials as Catalysts for the Oxidation of 1â€Phenylethanol. ChemCatChem, 2016, 8, 2254-2266.	1.8	46
98	Highly efficient and reusable CNT supported iron(<scp>ii</scp>) catalyst for microwave assisted alcohol oxidation. Dalton Transactions, 2016, 45, 6816-6819.	1.6	46
99	Ciprofloxacin wastewater treated by UVA photocatalysis: contribution of irradiated TiO ₂ and ZnO nanoparticles on the final toxicity as assessed by Vibrio fischeri. RSC Advances, 2016, 6, 95494-95503.	1.7	59
100	CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials. Journal of Colloid and Interface Science, 2016, 480, 17-29.	5.0	15
101	Understanding the Reactions of CO2, NO, and N2O with Activated Carbon Catalyzed by Binary Mixtures. Energy & Fuels, 2016, 30, 6881-6891.	2.5	9
102	Aerobic selective oxidation of alcohols using La1â^'Ce CoO3 perovskite catalysts. Journal of Catalysis, 2016, 340, 41-48.	3.1	65
103	Application of Au/TiO2 catalysts in the low-temperature water–gas shift reaction. International Journal of Hydrogen Energy, 2016, 41, 4670-4681.	3.8	35
104	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	3.1	44
105	Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol. Applied Catalysis A: General, 2016, 518, 198-205.	2.2	50
106	(<i>S</i>)â€BINOL Immobilized onto Multiwalled Carbon Nanotubes through Covalent Linkage: A New Approach for Hybrid Nanomaterials Characterization. ChemNanoMat, 2015, 1, 178-187.	1.5	5
107	The use of nanodiamonds in the seeding of CVD diamond and in heterogeneous catalysis. , 2015, , .		1
108	Nanodiamond–TiO ₂ composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Advances, 2015, 5, 58363-58370.	1.7	39

#	Article	IF	CITATIONS
109	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	1.9	79
110	Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions. Applied Surface Science, 2015, 341, 48-54.	3.1	95
111	Effect of preparation method on the solid state properties and the deN ₂ O performance of CuO–CeO ₂ oxides. Catalysis Science and Technology, 2015, 5, 3714-3727.	2.1	88
112	Nickel(II) complexes of bidentate N–N′ ligands containing mixed pyrazole, pyrimidine and pyridine aromatic rings as catalysts for ethylene polymerisation. Journal of Organometallic Chemistry, 2015, 799-800, 90-98.	0.8	12
113	Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catalysis Today, 2015, 244, 161-171.	2.2	129
114	Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244, 103-114.	2.2	99
115	Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides. Applied Catalysis A: General, 2014, 472, 101-112.	2.2	58
116	Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water–gas shift reaction. Applied Catalysis A: General, 2014, 470, 45-55.	2.2	45
117	Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides. Journal of Environmental Chemical Engineering, 2014, 2, 344-355.	3.3	37
118	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	3.1	83
119	Highly active phosphite gold(i) catalysts for intramolecular hydroalkoxylation, enyne cyclization and furanyne cyclization. Chemical Communications, 2014, 50, 4937.	2.2	143
120	Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 16449-16465.	4.0	1,018
121	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	3.1	65
122	Organogold Complexes—An Important Role in Homogenous Catalysis and a Golden Future as Heterogenized (Hybrid) Materials. , 2013, , 105-121.		1
123	Nanodiamond–TiO ₂ Composites for Heterogeneous Photocatalysis. ChemPlusChem, 2013, 78, 801-807.	1.3	33
124	Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Applied Catalysis A: General, 2013, 467, 279-290.	2.2	93
125	Heterogenisation of a C corpionate Fe ^{II} Complex on Carbon Materials for Cyclohexane Oxidation with Hydrogen Peroxide. ChemCatChem, 2013, 5, 3847-3856.	1.8	80
126	Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1â^'xSmxOδ mixed oxides. Journal of Hazardous Materials, 2013, 261, 512-521.	6.5	92

#	Article	IF	CITATIONS
127	Homogeneous and heterogenised new gold C-scorpionate complexes as catalysts for cyclohexane oxidation. Catalysis Science and Technology, 2013, 3, 3056.	2.1	91
128	Nanoparticle Size and Concentration Dependence of the Electroactive Phase Content and Electrical and Optical Properties of Ag/Poly(vinylidene fluoride) Composites. ChemPhysChem, 2013, 14, 1926-1933.	1.0	54
129	Nanodiamond–TiO ₂ Composites for Heterogeneous Photocatalysis. ChemPlusChem, 2013, 78, 750-750.	1.3	6
130	Exotemplated copper, cobalt, iron, lanthanum and nickel oxides for catalytic oxidation of ethyl acetate. Journal of Environmental Chemical Engineering, 2013, 1, 795-804.	3.3	39
131	The role of nanogold in human tropical diseases: research, detection and therapy. Gold Bulletin, 2013, 46, 65-79.	1.1	4
132	Cover Picture: Nanodiamond-TiO ₂ Composites for Heterogeneous Photocatalysis (ChemPlusChem 8/2013). ChemPlusChem, 2013, 78, 749-749.	1.3	0
133	The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. Journal of Materials Science, 2012, 47, 8103-8111.	1.7	32
134	Gold highlights at the 10th International Conference on Heteroatom Chemistry (ICHAC-10), in Uji, Kyoto, Japan, 20–25 May 2012. Gold Bulletin, 2012, 45, 171-175.	1.1	0
135	Gold highlights at the Third International NanoMedicine Conference, in Coogee Beach, Sydney, Australia, 2–4 July 2012. Gold Bulletin, 2012, 45, 235-239.	1.1	0
136	Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide. RSC Advances, 2012, 2, 2957.	1.7	74
137	Conference report: gold highlights at the International Conference on Nanomaterials and Nanotechnology 2011 (ICNANO-2011) in Delhi, India, 18–21 December 2011. Gold Bulletin, 2012, 45, 99-104.	1.1	0
138	Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180, 148-154.	2.2	85
139	Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 2012, 186, 29-34.	2.2	311
140	Gold supported on carbon nanotubes for the selective oxidation of glycerol. Journal of Catalysis, 2012, 285, 83-91.	3.1	107
141	The Best of Two Worlds from the Gold Catalysis Universe: Making Homogeneous Heterogeneous. ChemCatChem, 2012, 4, 18-29.	1.8	40
142	Gold on oxide-doped alumina supports as catalysts for CO oxidation. Applied Nanoscience (Switzerland), 2012, 2, 35-46.	1.6	24
143	Dioxin Decomposition and Detection Using Gold Based Materials. Recent Patents on Chemical Engineering, 2012, 5, 56-62.	0.5	0
144	Facile one-pot synthesis of Pt nanoparticles /SBA-15: an active and stable material for catalytic applications. Energy and Environmental Science, 2011, 4, 2020.	15.6	49

#	Article	IF	CITATIONS
145	Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 2011, 45, 4583-4591.	5.3	289
146	Gold nanoparticles supported on magnesium oxide for CO oxidation. Nanoscale Research Letters, 2011, 6, 435.	3.1	31
147	Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters, 2011, 141, 420-431.	1.4	48
148	Octahedral Co(III) complexes of 2-(phenylimino)pyrrolyl ligands: Synthesis and structural characterisation. Inorganica Chimica Acta, 2011, 367, 151-157.	1.2	18
149	Gold highlights at the 11th "Trends in Nanotechnology―International Conference (TNT 2010) in Braga, Portugal, September 6–10, 2010. Gold Bulletin, 2011, 44, 57-62.	1.1	2
150	Gold highlights on the 22nd Meeting of the Portuguese Society of Chemistry in Braga, Portugal, July 3–6, 2011. Gold Bulletin, 2011, 44, 239-243.	1.1	0
151	Gold supported on metal oxides for carbon monoxide oxidation. Nano Research, 2011, 4, 180-193.	5.8	76
152	Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites. Nanoscale Research Letters, 2011, 6, 302.	3.1	50
153	Reactions of small molecules on gold single crystal surfaces. Gold Bulletin, 2010, 43, 252-266.	3.2	18
154	Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides. Catalysis Letters, 2010, 134, 217-227.	1.4	65
155	Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. Journal of Catalysis, 2010, 273, 191-198.	3.1	99
156	Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon. Journal of Catalysis, 2010, 274, 207-214.	3.1	81
157	Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A: General, 2010, 381, 150-160.	2.2	74
158	Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 2010, 99, 198-205.	10.8	221
159	Effect of chloride on the sinterization of Au/CeO2 catalysts. Catalysis Today, 2010, 154, 293-302.	2.2	48
160	Gold nanoparticles on ceria supports for the oxidation of carbon monoxide. Catalysis Today, 2010, 154, 21-30.	2.2	65
161	Preparation of Au nanoparticles on Ce-Ti-O supports. Studies in Surface Science and Catalysis, 2010, 175, 457-461.	1.5	2
162	Photodeposition of Au and Pt on ZnO and TiO2. Studies in Surface Science and Catalysis, 2010, 175, 629-633.	1.5	6

#	Article	IF	CITATIONS
163	Adsorption of small molecules on gold single crystal surfaces. Gold Bulletin, 2009, 42, 288-301.	3.2	64
164	Gold Highlights at nanoSpain conference in Braga, Portugal April 14–18, 2008. Gold Bulletin, 2008, 41, 265-268.	3.2	0
165	Cold Highlights at the 21st Meeting of the Portuguese Society of Chemistry in Porto, Portugal, June 11–13, 2008. Gold Bulletin, 2008, 41, 350-351.	3.2	1
166	Transition-metal complexes of phenoxy-imine ligands modified with pendant imidazolium salts: Synthesis, characterisation and testing as ethylene polymerisation catalysts. Journal of Organometallic Chemistry, 2008, 693, 717-724.	0.8	23
167	Synthesis, characterisation and solid state structures of α-diimine cobalt(II) complexes: Ethylene polymerisation tests. Journal of Organometallic Chemistry, 2008, 693, 769-775.	0.8	45
168	N2O reduction by activated carbon over iron bimetallic catalysts. Catalysis Today, 2008, 133-135, 441-447.	2.2	14
169	Synthesis, Structure and Magnetic Behavior of Five-Coordinate Bis(iminopyrrolyl) Complexes of Cobalt(II) containing PMe3 and THF Ligands. Inorganic Chemistry, 2008, 47, 8896-8911.	1.9	48
170	Synthesis and Characterization of Tetrahedral and Square Planar Bis(iminopyrrolyl) Complexes of Cobalt(II). Inorganic Chemistry, 2007, 46, 6880-6890.	1.9	79
171	Bis(ketopyrrolyl) complexes of Co(ii) stabilised by trimethylphosphine ligands. Dalton Transactions, 2007, , 5460.	1.6	17
172	Catalytic Applications for Gold Nanotechnology. Nanoscience and Technology, 2007, , 377-489.	1.5	30
173	Aromatisation of 2-phenyl-1-pyrroline to 2-phenylpyrrole using activated carbon. Catalysis Letters, 2006, 111, 221-225.	1.4	10
174	N2O conversion using manganese binary mixtures supported on activated carbon. Applied Catalysis B: Environmental, 2005, 59, 181-186.	10.8	22
175	Mathematical modeling of rate oscillations in NO reduction by H and CO over the Ir(110) surface. Catalysis Today, 2005, 105, 223-233.	2.2	7
176	Selective oxidation of ammonia over Ru(0001). Surface Science, 2004, 555, 83-93.	0.8	25
177	RESONANT PHOTOEMISSION OF N2O ON Ir(110). Surface Review and Letters, 2004, 11, 385-389.	0.5	9
178	NO conversion using binary vanadium mixtures supported on activated carbon. Applied Catalysis B: Environmental, 2003, 44, 227-235.	10.8	19
179	Selective oxidation of ammonia over Ir(). Comparison with Ir(). Surface Science, 2003, 532-535, 87-95.	0.8	29
180	Oscillations in the N2O–H2 reaction over Ir(110). Route to chaos. Surface Science, 2003, 532-535, 96-102.	0.8	6

#	Article	IF	CITATIONS
181	Synchrotron XPS study of the NO–CO reaction on Pt(100). Surface Science, 2003, 532-535, 120-125.	0.8	8
182	Adsorption of SO2 using vanadium and vanadium–copper supported on activated carbon. Catalysis Today, 2003, 78, 203-210.	2.2	37
183	The reduction of NO on Pt(100) by H2 and CO studied with synchrotron x-ray photoelectron spectroscopy. Journal of Chemical Physics, 2003, 119, 6245-6252.	1.2	14
184	Selective oxidation of ammonia over Ir(110). Surface Science, 2002, 505, 163-170.	0.8	28
185	Plasma generation of supported metal catalysts. Applied Catalysis A: General, 2002, 237, 41-51.	2.2	27
186	Interaction of nitric oxide with Pt(100). A fast X-ray photoelectron spectroscopy study. Surface Science, 2002, 516, 109-117.	0.8	29
187	Title is missing!. Catalysis Letters, 2002, 84, 135-142.	1.4	8
188	Reduction of N2O by H2 on the Ir(110) surface: oscillations in rate. Surface Science, 2001, 495, 1-7.	0.8	17
189	Uncatalysed and catalysed CO2 reaction using metal catalysts and binary vanadium mixtures supported on activated carbon. Carbon, 2001, 39, 451-463.	5.4	19
190	Modelling of uncatalysed and barium catalysed NO reduction by activated carbon. Studies in Surface Science and Catalysis, 2000, 130, 1421-1426.	1.5	0
191	Vanadium as a catalyst for NO, N2O and CO2 reaction with activated carbon. Catalysis Today, 2000, 57, 305-312.	2.2	41
192	Uncatalyzed and catalyzed NO and N2O reaction using various catalysts and binary barium mixtures supported on activated carbon. Catalysis Today, 1999, 54, 559-567.	2.2	29
193	In-situ techniques for studying deterioration of C/C composite aircraft brakes by catalytic oxidation. Materials and Corrosion - Werkstoffe Und Korrosion, 1999, 50, 689-695.	0.8	7