List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576382/publications.pdf Version: 2024-02-01

MADER PUBEL

#	Article	IF	CITATIONS
1	JET ITER-like wallâ \in "overview and experimental programme. Physica Scripta, 2011, T145, 014001.	1.2	263
2	Overview of the ITER-like wall project. Physica Scripta, 2007, T128, 137-143.	1.2	183
3	Material erosion and migration in tokamaks. Plasma Physics and Controlled Fusion, 2005, 47, B303-B322.	0.9	105
4	Development of laser-based techniques for <i>in situ</i> characterization of the first wall in ITER and future fusion devices. Nuclear Fusion, 2013, 53, 093002.	1.6	99
5	A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis. Review of Scientific Instruments, 2016, 87, 103303.	0.6	98
6	Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance. Nuclear Fusion, 2001, 41, 1087-1099.	1.6	96
7	Hydrogen inventories in nuclear fusion devices. Journal of Nuclear Materials, 2001, 290-293, 381-388.	1.3	95
8	Gas balance and fuel retention in fusion devices. Nuclear Fusion, 2007, 47, 1112-1120.	1.6	94
9	Diagnostic mirrors for ITER: A material choice and the impact of erosion and deposition on their performance. Journal of Nuclear Materials, 2007, 363-365, 1395-1402.	1.3	94
10	Overview of material re-deposition and fuel retention studies at JET with the Gas Box divertor. Nuclear Fusion, 2006, 46, 350-366.	1.6	89
11	Tritium retention in next step devices and the requirements for mitigation and removal techniques. Plasma Physics and Controlled Fusion, 2006, 48, B189-B199.	0.9	83
12	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	1.6	83
13	Material migration patterns and overview of first surface analysis of the JET ITER-like wall. Physica Scripta, 2014, T159, 014010.	1.2	75
14	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	1.6	75
15	Molybdenum test limiter experiments in TEXTOR. Nuclear Fusion, 1994, 34, 1417-1429.	1.6	69
16	Erosion/deposition in JET during the period 1999–2001. Journal of Nuclear Materials, 2003, 313-316, 419-423.	1.3	69
17	R&D on full tungsten divertor and beryllium wall for JET ITER-like wall project. Fusion Engineering and Design, 2007, 82, 1839-1845.	1.0	66
18	Beryllium coatings on metals for marker tiles at JET: development of process and characterization of layers. Physica Scripta, 2007, T128, 157-161.	1.2	63

#	Article	IF	CITATIONS
19	Erosion, screening, and migration of tungsten in the JET divertor. Nuclear Fusion, 2019, 59, 096035.	1.6	60
20	An overview of the comprehensive First Mirror Test in JET with ITER-like wall. Physica Scripta, 2014, T159, 014011.	1.2	59
21	Erosion and redeposition of wall material in controlled fusion devices. Vacuum, 2002, 67, 399-408.	1.6	56
22	Beryllium and carbon films in JET following D–T operation. Journal of Nuclear Materials, 2003, 313-316, 321-326.	1.3	56
23	Investigation of carbon transport in the scrape-off layer of TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 362-366.	1.3	55
24	Fuel accumulation in co-deposited layers on plasma facing components. Journal of Nuclear Materials, 2001, 290-293, 473-477.	1.3	54
25	Ion beam analysis of fusion plasma-facing materials and components: facilities and research challenges. Nuclear Fusion, 2020, 60, 025001.	1.6	54
26	Dust generation in tokamaks: Overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall. Fusion Engineering and Design, 2018, 136, 579-586.	1.0	52
27	Experience with bulk tungsten test-limiters under high heat loads: melting and melt layer propagation. Physica Scripta, 2007, T128, 81-86.	1.2	51
28	First dust study in JET with the ITER-like wall: sampling, analysis and classification. Nuclear Fusion, 2015, 55, 113033.	1.6	51
29	Short and long range transport of materials eroded from wall components in fusion devices. Journal of Nuclear Materials, 2003, 313-316, 311-320.	1.3	49
30	Comparison of tokamak behaviour with tungsten and low-Zplasma facing materials. Plasma Physics and Controlled Fusion, 2000, 42, B293-B310.	0.9	48
31	Global erosion and deposition patterns in JET with the ITER-like wall. Journal of Nuclear Materials, 2015, 463, 157-161.	1.3	48
32	Overview of fuel inventory in JET with the ITER-like wall. Nuclear Fusion, 2017, 57, 086045.	1.6	47
33	Experiments with tungsten limiters in TEXTOR-94. Journal of Nuclear Materials, 1998, 258-263, 858-864.	1.3	46
34	Overview of the JET ITER-like wall divertor. Nuclear Materials and Energy, 2017, 12, 499-505.	0.6	46
35	Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns. Nuclear Fusion, 2019, 59, 086009.	1.6	45
36	Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak. Journal of Nuclear Materials, 2013, 438, S1204-S1207.	1.3	44

#	Article	IF	CITATIONS
37	Application of tungsten for plasma limiters in TEXTOR. Journal of Nuclear Materials, 2000, 283-287, 1128-1133.	1.3	42
38	Operation of TEXTOR-94 with tungsten poloidal main limiters. Journal of Nuclear Materials, 2001, 290-293, 947-952.	1.3	42
39	Current status of the JET ITER-like Wall Project. Physica Scripta, 2009, T138, 014030.	1.2	42
40	Thick Co-Deposits and Dust in Controlled Fusion Devices with Carbon Walls: Fuel Inventory and Growth Rate of Co-Deposited Layers. Physica Scripta, 2003, T103, 20.	1.2	41
41	Studies of dust from JET with the ITER-Like Wall: Composition and internal structure. Nuclear Materials and Energy, 2017, 12, 582-587.	0.6	41
42	Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity. Nuclear Fusion, 2019, 59, 066029.	1.6	41
43	Fusion Neutrons: Tritium Breeding and Impact on Wall Materials and Components of Diagnostic Systems. Journal of Fusion Energy, 2019, 38, 315-329.	0.5	41
44	An overview of a comprehensive First Mirror Test for ITER at JET. Journal of Nuclear Materials, 2009, 390-391, 1066-1069.	1.3	40
45	Analysis and oxidation of thick deposits on TEXTOR plasma facing components. Journal of Nuclear Materials, 1999, 266-269, 1185-1190.	1.3	38
46	13C transport studies in L-mode divertor plasmas on DIII-D. Journal of Nuclear Materials, 2005, 337-339, 30-34.	1.3	38
47	Erosion of a tungsten limiter under high heat flux in TEXTOR. Journal of Nuclear Materials, 2007, 363-365, 96-100.	1.3	38
48	Deuterium inventory in Tore Supra: Coupled carbon–deuterium balance. Journal of Nuclear Materials, 2013, 438, S120-S125.	1.3	38
49	Structural studies of deposited layers on JET MkII-SRP inner divertor tiles. Journal of Nuclear Materials, 2007, 363-365, 190-195.	1.3	34
50	Nitrogen and neon retention in plasma-facing materials. Journal of Nuclear Materials, 2011, 415, S223-S226.	1.3	34
51	Formation of Carbon Containing Layers on Tungsten Test Limiters. Physica Scripta, 1999, T81, 61.	1.2	34
52	Exposure of metal mirrors in the scrape-off layer of TEXTOR. Journal of Nuclear Materials, 2005, 337-339, 1116-1120.	1.3	32
53	Tungsten and beryllium armour development for the JET ITER-like wall project. Nuclear Fusion, 2007, 47, 222-227.	1.6	32
54	Erosion and deposition in the JET MkII-SRP divertor. Journal of Nuclear Materials, 2007, 363-365, 287-293.	1.3	32

#	Article	IF	CITATIONS
55	Co-deposited layers in the divertor region of JET-ILW. Journal of Nuclear Materials, 2015, 463, 814-817.	1.3	32
56	Impurity redeposition in the SOL of TEXTOR after boronization. Journal of Nuclear Materials, 1990, 176-177, 150-157.	1.3	31
57	Removal of beryllium-containing films deposited in JET from mirror surfaces by laser cleaning. Journal of Nuclear Materials, 2011, 415, S1199-S1202.	1.3	30
58	First results and surface analysis strategy for plasma-facing components after JET operation with the ITER-like wall. Physica Scripta, 2014, T159, 014016.	1.2	30
59	Modelling of carbon migration during JET13C injection experiments. Nuclear Fusion, 2008, 48, 105002.	1.6	29
60	Overview of experimental preparation for the ITER-Like Wall at JET. Journal of Nuclear Materials, 2011, 415, S936-S942.	1.3	29
61	Treatment of ITER plasma facing components: Current status and remaining open issues before ITER implementation. Fusion Engineering and Design, 2007, 82, 2390-2398.	1.0	28
62	Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data. Nuclear Materials and Energy, 2017, 12, 559-563.	0.6	28
63	Survey of dust formed in the TEXTOR tokamak: structure and fuel retention. Physica Scripta, 2009, T138, 014025.	1.2	26
64	Efficacy of photon cleaning of JET divertor tiles. Journal of Nuclear Materials, 2007, 363-365, 341-345.	1.3	25
65	Plasma impact on diagnostic mirrors in JET. Nuclear Materials and Energy, 2017, 12, 506-512.	0.6	25
66	Fuel inventory and deposition in castellated structures in JET-ILW. Nuclear Fusion, 2017, 57, 066027.	1.6	25
67	Material migration and fuel retention studies during the JET carbon divertor campaigns. Fusion Engineering and Design, 2019, 138, 78-108.	1.0	25
68	First mirror test in JET for ITER: Complete overview after three ILW campaigns. Nuclear Materials and Energy, 2019, 19, 59-66.	0.6	24
69	Plasma cleaning of beryllium coated mirrors. Physica Scripta, 2016, T167, 014069.	1.2	24
70	Characterization and heat flux testing of beryllium coatings on Inconel for JET ITER-like wall project. Physica Scripta, 2007, T128, 166-170.	1.2	23
71	Theoretical and experimental studies on molybdenum and stainless steel mirrors cleaning by high repetition rate laser beam. Fusion Engineering and Design, 2011, 86, 1728-1731.	1.0	23
72	Laser-assisted cleaning of beryllium-containing mirror samples from JET and PISCES-B. Fusion Engineering and Design, 2014, 89, 122-130.	1.0	23

#	Article	IF	CITATIONS
73	Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak. Matter and Radiation at Extremes, 2017, 2, 87-104.	1.5	23
74	Fine metal dust particles on the wall probes from JET-ILW. Physica Scripta, 2017, T170, 014038.	1.2	22
75	Oxygen impurity analysis by collector probe measurements in the carbonized textor tokamak. Journal of Nuclear Materials, 1989, 161, 153-163.	1.3	21
76	Testing of Tungsten and Tantalum Limiters at the TEXTOR Tokamak: Material Performance and Deuterium Retention. Physica Scripta, 2003, T103, 59.	1.2	21
77	Diagnostics for studying deposition and erosion processes in JET. Fusion Engineering and Design, 2005, 74, 745-749.	1.0	21
78	Data on erosion and hydrogen fuel retention in Beryllium plasma-facing materials. Nuclear Materials and Energy, 2021, 27, 100994.	0.6	21
79	Accelerator-based ion beam analysis of fusion reactor materials. Vacuum, 2005, 78, 255-261.	1.6	20
80	Overview of JET post-mortem results following the 2007–9 operational period, and comparisons with previous campaigns. Physica Scripta, 2011, T145, 014003.	1.2	20
81	Overview of material migration and mixing, fuel retention and cleaning of ITER-like castellated structures in TEXTOR. Journal of Nuclear Materials, 2011, 415, S289-S292.	1.3	20
82	Multi machine scaling of fuel retention in 4 carbon dominated tokamaks. Journal of Nuclear Materials, 2011, 415, S735-S739.	1.3	20
83	Overview of the second stage in the comprehensive mirrors test in JET. Physica Scripta, 2011, T145, 014070.	1.2	20
84	Nuclear reaction and heavy ion ERD analysis of wall materials from controlled fusion devices: Deuterium and nitrogen-15 studies. Nuclear Instruments & Methods in Physics Research B, 2012, 273, 113-117.	0.6	20
85	Tritium retention characteristics in dust particles in JET with ITER-like wall. Nuclear Materials and Energy, 2018, 17, 279-283.	0.6	20
86	Impact of molybdenum and tungsten test limiters on ion fluxes in the plasma edge of TEXTOR. Journal of Nuclear Materials, 1997, 249, 116-120.	1.3	19
87	Overview of fuel retention in composite and tungsten limiters. Journal of Nuclear Materials, 2002, 307-311, 111-115.	1.3	19
88	Ion beam analysis methods in the studies of plasma facing materials in controlled fusion devices. Vacuum, 2003, 70, 423-428.	1.6	19
89	Injection of nitrogen-15 tracer into ASDEX-Upgrade: New technique in material migration studies. Journal of Nuclear Materials, 2013, 438, S616-S619.	1.3	19
90	Silicon fluxes in the scrape-off layer plasma during silicon-assisted operation of TEXTOR. Journal of Nuclear Materials, 1995, 220-222, 536-540.	1.3	18

#	Article	IF	CITATIONS
91	Performance and erosion of a tungsten brush limiter exposed at the TEXTOR tokamak. Journal of Nuclear Materials, 2003, 313-316, 67-71.	1.3	18
92	Analysis of fuel retention in plasma-facing components from controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 711-717.	0.6	18
93	Laser-based and thermal methods for fuel removal and cleaning of plasma-facing components. Journal of Nuclear Materials, 2011, 415, S801-S804.	1.3	18
94	Experience of handling beryllium, tritium and activated components from JET ITER like wall. Physica Scripta, 2016, T167, 014057.	1.2	18
95	The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 4-11.	0.6	18
96	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	1.3	18
97	An overview of erosion–deposition studies for the JET Mk II high delta divertor. Physica Scripta, 2009, T138, 014005.	1.2	18
98	Post-mortem measurements of fuel retention at JET with MKII-SRP divertor. Journal of Nuclear Materials, 2009, 390-391, 631-634.	1.3	17
99	Tungsten migration studies by controlled injection of volatile compounds. Journal of Nuclear Materials, 2013, 438, S170-S174.	1.3	17
100	Carbon Particles Emission, Brittle Destruction and Co-deposit Formation: Experience from Electron Beam Experiments and Controlled Fusion Devices. Physica Scripta, 2001, T91, 36.	1.2	16
101	Simulation calculations of mutual contamination between tungsten and carbon and its impact on plasma surface interactions. Journal of Nuclear Materials, 2001, 290-293, 303-307.	1.3	16
102	Material mixing on plasma-facing components: Compound formation. Journal of Nuclear Materials, 2009, 386-388, 740-743.	1.3	16
103	Material mixing on W/C twin limiter in TEXTOR-94. Fusion Engineering and Design, 2000, 49-50, 355-362.	1.0	15
104	Comparison of impurity production, recycling and power deposition on carbon and tungsten limiters in TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 276-280.	1.3	15
105	First Mirrors Test in JET for ITER: An overview of optical performance and surface morphology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623, 818-822.	0.7	15
106	Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1833-1837.	0.6	15
107	Deposition of13C tracer in the JET MkII-HD divertor. Physica Scripta, 2011, T145, 014004.	1.2	15
108	Self-consistent application of ion cyclotron wall conditioning for co-deposited layer removal and recovery of tokamak operation on TEXTOR. Nuclear Fusion, 2013, 53, 123001.	1.6	15

#	Article	IF	CITATIONS
109	Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 91-95.	0.6	15
110	Correlation of surface chemical states with hydrogen isotope retention in divertor tiles of JET with ITER-Like Wall. Fusion Engineering and Design, 2018, 132, 24-28.	1.0	15
111	High-Z Mo-limiter test in TEXTOR. Impurity fluxes, thermal response and post-mortem analysis of Mo-limiter head. Journal of Nuclear Materials, 1994, 212-215, 1370-1375.	1.3	14
112	Protection of limiter surfaces by films locally deposited during TEXTOR discharges. Journal of Nuclear Materials, 1995, 220-222, 457-461.	1.3	14
113	Graphite–tungsten twin limiters in studies of material mixing processes on high heat flux components. Journal of Nuclear Materials, 2000, 283-287, 1089-1093.	1.3	14
114	Performances of Rh and Mo mirrors under JET exposure. Journal of Nuclear Materials, 2013, 438, S1187-S1191.	1.3	14
115	The JET technology program in support of ITER. Fusion Engineering and Design, 2014, 89, 896-900.	1.0	14
116	Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall. Fusion Engineering and Design, 2017, 116, 1-4.	1.0	14
117	Evaluation of tritium retention in plasma facing components during JET tritium operations. Physica Scripta, 2021, 96, 124075.	1.2	14
118	Collection efficiency for carbon and deuterium of different surfaces when exposed to the scrape-off plasma in tokamaks. Journal of Nuclear Materials, 1989, 162-164, 593-597.	1.3	13
119	In-Situ Measurement of Trapped Hydrogen by Laser Desorption in TEXTOR-94. Physica Scripta, 2001, T94, 102.	1.2	13
120	Tracer techniques for the assessment of material migration and surface modification of plasma-facing components. Journal of Nuclear Materials, 2015, 463, 280-284.	1.3	13
121	Surface composition and structure of divertor tiles following the JET tokamak operation with the ITER-like wall. Nuclear Fusion, 2017, 57, 076027.	1.6	13
122	Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall. Physica Scripta, 2017, T170, 014031.	1.2	13
123	The upgraded TOMAS device: A toroidal plasma facility for wall conditioning, plasma production, and plasma–surface interaction studies. Review of Scientific Instruments, 2021, 92, 023506.	0.6	13
124	First mirror erosion–deposition studies in JET using an ITER-like mirror test assembly. Nuclear Fusion, 2021, 61, 046022.	1.6	13
125	Deposition results from rotating collector diagnostics in JET. Physica Scripta, 2009, T138, 014023.	1.2	13
126	AFM and STM characterization of surfaces exposed to high flux deuterium plasma. Journal of Nuclear Materials, 1995, 220-222, 917-921.	1.3	12

#	Article	IF	CITATIONS
127	Overview of nitrogen-15 application as a tracer gas for material migration and retention studies in tokamaks. Physica Scripta, 2014, T159, 014042.	1.2	12
128	Metallic mirrors for plasma diagnosis in current and future reactors: tests for ITER and DEMO. Physica Scripta, 2017, T170, 014061.	1.2	12
129	Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall. Analytical Chemistry, 2018, 90, 5744-5752.	3.2	12
130	Plasma–surface interaction in the stellarator W7-X: conclusions drawn from operation with graphite plasma-facing components. Nuclear Fusion, 2022, 62, 016006.	1.6	12
131	Roughness determination of plasma-modified surface layers with atomic force microscopy. Thin Solid Films, 1995, 270, 426-430.	0.8	11
132	TEM and EELS characterization of carbon dust and co-deposited layers from the TEXTOR tokamak. Journal of Nuclear Materials, 2002, 307-311, 1289-1293.	1.3	11
133	Thermal load testing of erosion-monitoring beryllium marker tile for the ITER-Like Wall Project at JET. Fusion Engineering and Design, 2008, 83, 1072-1076.	1.0	11
134	Nitrogen-assisted removal of deuterated carbon layers. Journal of Nuclear Materials, 2009, 390-391, 647-650.	1.3	11
135	Characterisation of surface layers formed on plasma-facing components in controlled fusion devices: Role of heavy ion elastic recoil detection. Vacuum, 2015, 122, 260-267.	1.6	11
136	Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 355-359.	0.6	11
137	Deposition in the tungsten divertor during the 2011–2016 campaigns in JET with ITER-like wall. Physica Scripta, 2020, T171, 014044.	1.2	11
138	Ion-induced release of deuterium from co-deposits by high energy helium bombardment. Journal of Nuclear Materials, 1997, 241-243, 1026-1030.	1.3	11
139	Wall conditioning by microwave generated plasmas in a toroidal magnetic field. Journal of Nuclear Materials, 2001, 290-293, 1180-1184.	1.3	10
140	Tritium and Deuterium Retention in Graphite Limiters in TEXTOR. Fusion Science and Technology, 2002, 41, 924-928.	0.6	10
141	Analysis of plasma facing materials: material migration and fuel retention. Physica Scripta, 2006, T123, 54-65.	1.2	10
142	Dust survey following the final shutdown of TEXTOR: metal particles and fuel retention. Physica Scripta, 2016, T167, 014059.	1.2	10
143	Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR. Physica Scripta, 2014, T159, 014017.	1.2	9
144	Nitrogen removal from plasma-facing components by ion cyclotron wall conditioning in TEXTOR. Journal of Nuclear Materials, 2015, 463, 688-692.	1.3	9

#	Article	IF	CITATIONS
145	Review on global migration, fuel retention and modelling after TEXTOR decommission. Nuclear Materials and Energy, 2018, 17, 83-112.	0.6	9
146	Local migration studies of high-Zmetals in the TEXTOR tokamak. Physica Scripta, 2016, T167, 014058.	1.2	9
147	Micro-analyses of dust particles generated in the JET tokamak with the ITER-like wall. Nuclear Fusion, 2020, 60, 126031.	1.6	9
148	B4C-limiter experiments at TEXTOR. Journal of Nuclear Materials, 2003, 313-316, 223-229.	1.3	8
149	Modeling of erosion and deposition patterns on C–W and W–Ta twin limiters exposed to the TEXTOR edge plasmas. Journal of Nuclear Materials, 2004, 329-333, 732-736.	1.3	8
150	An overview of nuclear micro-beam analysis of surface and bulk fuel retention in carbon-fibre composites from Tore Supra. Journal of Nuclear Materials, 2011, 415, S761-S764.	1.3	8
151	Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET. Journal of Nuclear Materials, 2015, 463, 796-799.	1.3	8
152	Search for mobilised dust during operations with equipment for remote handling in JET with ITER-like wall. Physica Scripta, 2020, T171, 014048.	1.2	8
153	Dust generation and accumulation in JET-ILW: morphology and stability of co-deposits on main plasma-facing components and wall probes. Physica Scripta, 0, , .	1.2	8
154	Micro-distribution of fuel and metal in carbon-based plasma-facing materials. Physica Scripta, 2011, T145, 014014.	1.2	8
155	Fluxes of boron in the scrape-off plasma of TEXTOR following boronization. Journal of Nuclear Materials, 1990, 176-177, 363-369.	1.3	7
156	Oxygen gettering on graphite in the SOL of TEXTOR after wall conditioning with boron. Vacuum, 1992, 43, 745-748.	1.6	7
157	The amount and distribution of deuterium retained in the jet divertor after the C and Be phases in 1994–1995. Journal of Nuclear Materials, 1997, 241-243, 408-413.	1.3	7
158	Ion flux measurements with the improved collector probe system at the TEXTOR-94 tokamak. Review of Scientific Instruments, 1998, 69, 2671-2674.	0.6	7
159	Deposition of a-C/B:D layers by ICRF-wall conditioning in TEXTOR-94. Journal of Nuclear Materials, 1999, 266-269, 240-246.	1.3	7
160	Retention of neon in graphite after ion beam implantation or exposures to the scrape-off layer plasma in the TEXTOR tokamak. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 138-145.	0.9	7
161	Efficiency of fuel removal techniques tested on plasma-facing components from the TEXTOR tokamak. Fusion Engineering and Design, 2012, 87, 935-940.	1.0	7
162	Determination of retained tritium from ILW dust particles in JET. Nuclear Materials and Energy, 2020, 22, 100673.	0.6	7

#	Article	IF	CITATIONS
163	Global distribution of tritium in JET with the ITER-like wall. Nuclear Materials and Energy, 2021, 26, 100930.	0.6	7
164	Characterization of neutral particle fluxes from ICWC and ECWC plasmas in the TOMAS facility. Physica Scripta, 2021, 96, 124025.	1.2	7
165	Fuel retention and erosion-deposition on inner wall cladding tiles in JET-ILW. Physica Scripta, 2021, 96, 124071.	1.2	7
166	lsotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET. Physica Scripta, 2022, 97, 044001.	1.2	7
167	Deuterium and impurity fluxes in the TEXTOR scrape-off layer measured for different limiter configurations. Physica Scripta, 1991, 43, 508-511.	1.2	6
168	Assessment of cleaning methods for first mirrors tested in JET for ITER. Journal of Nuclear Materials, 2013, 438, S1241-S1244.	1.3	6
169	Post-mortem measurements of fuel retention at JET. Physica Scripta, 2014, T159, 014052.	1.2	6
170	Whole-machine material migration studies in the TEXTOR tokamak with molybdenum. Nuclear Materials and Energy, 2017, 12, 518-523.	0.6	6
171	Impurity re-distribution in the corner regions of the JET divertor. Physica Scripta, 2017, T170, 014060.	1.2	6
172	Tritium distribution analysis of Be limiter tiles from JET-ITER like wall campaigns using imaging plate technique and β-ray induced X-ray spectrometry. Fusion Engineering and Design, 2020, 160, 111959.	1.0	6
173	Time-resolved deposition in the remote region of the JET-ILW divertor: measurements and modelling. Physica Scripta, 2017, T170, 014059.	1.2	6
174	Ion-induced release of deuterium from co-deposits by high energy helium bombardment. Journal of Nuclear Materials, 1997, 241-243, 1026-1030.	1.3	5
175	The change of surface topography of plasma facing components in controlled fusion devices. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 272, 174-180.	2.6	5
176	Engineering design and analysis of an ITER-like first mirror test assembly on JET. Fusion Engineering and Design, 2017, 123, 1054-1057.	1.0	5
177	Plasma-wall interaction on the divertor tiles of JET ITER-like wall from the viewpoint of micro/nanoscopic observations. Fusion Engineering and Design, 2018, 136, 199-204.	1.0	5
178	Metallography and mechanical parameters of plasma-exposed plasma-facing materials and components. Physica Scripta, 2020, T171, 014042.	1.2	5
179	Metal impurity fluxes in the TEXTOR scrape-off layer measured by collector probes in the presence of ALT II toroidal belt limiter. Journal of Nuclear Materials, 1989, 162-164, 409-413.	1.3	4
180	Simulation study of carbon and tungsten deposition on W/C twin test limiter in TEXTOR-94. Journal of Nuclear Materials, 2000, 283-287, 1182-1186.	1.3	4

#	Article	IF	CITATIONS
181	Reactor Aspects of Fusion: Issues Related to Materials, Radioactivity and Radiation-Induced Effects. Fusion Science and Technology, 2006, 49, 465-473.	0.6	4
182	Modelling of deposition and erosion of injected WF6 and MoF6 in TEXTOR. Nuclear Materials and Energy, 2017, 12, 564-568.	0.6	4
183	Design of an ICRF system for plasma–wall interactions and RF plasma production studies on TOMAS. Fusion Engineering and Design, 2017, 123, 317-320.	1.0	4
184	Be ITER-like wall at the JET tokamak under plasma. Physica Scripta, 2017, T170, 014049.	1.2	4
185	Surface morphology of the bulk tungsten divertor tiles from JET ITER-like wall. Physica Scripta, 2020, T171, 014010.	1.2	4
186	Molybdenum limiters for Extrap-T2 upgrade: surface properties and high heat flux testing. Fusion Engineering and Design, 2000, 49-50, 323-329.	1.0	3
187	Erosion and deposition effects on the vessel wall of TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 341-345.	1.3	3
188	In-situ measurements of carbon and deuterium deposition using the fast reciprocating probe in TEXTOR. Journal of Nuclear Materials, 2009, 390-391, 179-182.	1.3	3
189	Investigation of probe surfaces after ion cyclotron wall conditioning in ASDEX upgrade. Nuclear Materials and Energy, 2017, 12, 733-735.	0.6	3
190	Ageing of structural materials in tokamaks: TEXTOR liner study. Physica Scripta, 2017, T170, 014053.	1.2	3
191	Comparison of Hydrogen Isotope Retention in Divertor Tiles of JET with the ITER-Like Wall Following Campaigns in 2011–2012 and 2015–2016. Fusion Science and Technology, 2020, 76, 439-445.	0.6	3
192	An overview of tritium retention in dust particles from the JET-ILW divertor. Physica Scripta, 2022, 97, 024008.	1.2	3
193	Structure Materials in Fusion Reactors: Issues Related to Tritium, Radioactivity and Radiation-Induced Effects. Fusion Science and Technology, 2010, 57, 474-482.	0.6	2
194	Implementation and exploitation of JET enhancements at different fuel mixtures in preparation for DT operation and next step devices. Fusion Engineering and Design, 2019, 146, 741-744.	1.0	2
195	Fuel inventory and impurity deposition in castellated tungsten tiles in KSTAR: experiment and modelling. Physica Scripta, 2020, T171, 014049.	1.2	2
196	Tungsten Langmuir probes from JET-with the ITER-Like Wall: Assessment of mechanical properties by nano-indentation. Physica Scripta, 0, , .	1.2	1
197	Studies on the behaviour of titanium activation foils during long-term exposure at the JET tokamak. Fusion Engineering and Design, 2022, 177, 113056.	1.0	1
198	3D deposition patterns of deuterium retention and impurities in the COMPASS divertor: a data-driven root cause analysis and prediction approach. Fusion Engineering and Design, 2022, 179, 113118.	1.0	1

#	Article	IF	CITATIONS
199	16th International Conference on Plasma-Facing Materials and Components for Fusion Applications. Physica Scripta, 2017, T170, 010201.	1.2	0
200	Decommissioning of TEXTOR: properties of the Inconel liner. Physica Scripta, 2020, T171, 014036.	1.2	0
201	Application of Ion Beam Analysis in Studies of First Wall Materials in Controlled Fusion Devices. Physics, 2022, 4, 37-50.	0.5	0