Christopher A Schuh

List of Publications by Citations

Source: https://exaly.com/author-pdf/9576372/christopher-a-schuh-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 278 17,401 125 h-index g-index citations papers 6.6 19,369 296 7.44 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
278	Mechanical behavior of amorphous alloys. <i>Acta Materialia</i> , 2007 , 55, 4067-4109	8.4	2539
277	Design of stable nanocrystalline alloys. <i>Science</i> , 2012 , 337, 951-4	33.3	571
276	A nanoindentation study of serrated flow in bulk metallic glasses. <i>Acta Materialia</i> , 2003 , 51, 87-99	8.4	549
275	Nanoindentation studies of materials. <i>Materials Today</i> , 2006 , 9, 32-40	21.8	468
274	Atomistic basis for the plastic yield criterion of metallic glass. <i>Nature Materials</i> , 2003 , 2, 449-52	27	417
273	The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. <i>Acta Materialia</i> , 2003 , 51, 431-443	8.4	373
272	New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. <i>Acta Materialia</i> , 2004 , 52, 5879-5	5894	372
271	Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. <i>Nature Materials</i> , 2005 , 4, 617-21	27	335
270	Six decades of the Hall P etch effect () survey of grain-size strengthening studies on pure metals. <i>International Materials Reviews</i> , 2016 , 61, 495-512	16.1	334
269	Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. <i>Acta Materialia</i> , 2016 , 109, 375-393	8.4	315
268	Hall P etch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. <i>Scripta Materialia</i> , 2002 , 46, 735-740	5.6	275
267	Tailoring and patterning the grain size of nanocrystalline alloys. <i>Acta Materialia</i> , 2007 , 55, 371-379	8.4	252
266	Sliding wear of nanocrystalline NiW: Structural evolution and the apparent breakdown of Archard scaling. <i>Acta Materialia</i> , 2010 , 58, 4137-4148	8.4	226
265	Analysis of grain boundary networks and their evolution during grain boundary engineering. <i>Acta Materialia</i> , 2003 , 51, 687-700	8.4	224
264	A survey of instrumented indentation studies on metallic glasses. <i>Journal of Materials Research</i> , 2004 , 19, 46-57	2.5	222
263	Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. <i>Physical Review B</i> , 2009 , 79,	3.3	212
262	Initiation of shear bands near a stress concentration in metallic glass. <i>Acta Materialia</i> , 2007 , 55, 5348-53	35884	202

(2009-2004)

261	Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. <i>Acta Materialia</i> , 2004 , 52, 4121-4131	8.4	202	
260	The Hall P etch breakdown in nanocrystalline metals: A crossover to glass-like deformation. <i>Acta Materialia</i> , 2007 , 55, 5948-5958	8.4	201	
259	Nanoscale shape-memory alloys for ultrahigh mechanical damping. <i>Nature Nanotechnology</i> , 2009 , 4, 4	15 2 8.7	197	
258	Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. <i>Journal of Materials Research</i> , 2004 , 19, 2152-2158	2.5	191	
257	Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the NiW system. <i>Acta Materialia</i> , 2007 , 55, 4221-4232	8.4	185	
256	Shape memory and superelastic ceramics at small scales. <i>Science</i> , 2013 , 341, 1505-8	33.3	175	
255	Stability of binary nanocrystalline alloys against grain growth and phase separation. <i>Acta Materialia</i> , 2013 , 61, 2121-2132	8.4	173	
254	Microstructural evolution during the heat treatment of nanocrystalline alloys. <i>Journal of Materials Research</i> , 2007 , 22, 3233-3248	2.5	170	
253	Enhanced solid solution effects on the strength of nanocrystalline alloys. <i>Acta Materialia</i> , 2011 , 59, 16	1981463	1 161	
252	Yield surface of a simulated metallic glass. <i>Acta Materialia</i> , 2003 , 51, 5399-5411	8.4	159	
251	Distribution of thermally activated plastic events in a flowing glass. <i>Physical Review Letters</i> , 2009 , 102, 235503	7.4	155	
250	Adiabatic shear instability is not necessary for adhesion in cold spray. <i>Acta Materialia</i> , 2018 , 158, 430-4	13 % .4	143	
249	Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. <i>Journal of Materials Research</i> , 2013 , 28, 2154-2163	2.5	128	
248	Size effects in shape memory alloy microwires. <i>Acta Materialia</i> , 2011 , 59, 537-553	8.4	127	
247	Superelasticity and Shape Memory in Micro- and Nanometer-scale Pillars. <i>Advanced Materials</i> , 2008 , 20, 272-278	24	127	
	LU, LIL-LIU	·		
246	Grain boundary relaxation strengthening of nanocrystalline NiW alloys. <i>Journal of Materials Research</i> , 2012 , 27, 1285-1294	2.5	120	
246 245	Grain boundary relaxation strengthening of nanocrystalline NiW alloys. <i>Journal of Materials</i>		120 117	

243	Experimental assessment and simulation of surface nanocrystallization by severe shot peening. <i>Acta Materialia</i> , 2015 , 97, 105-115	8.4	115
242	Strength asymmetry in nanocrystalline metals under multiaxial loading. <i>Acta Materialia</i> , 2005 , 53, 3193-	·32.p5	115
241	In-situ observations of single micro-particle impact bonding. Scripta Materialia, 2018, 145, 9-13	5.6	114
240	Densification and strain hardening of a metallic glass under tension at room temperature. <i>Physical Review Letters</i> , 2013 , 111, 135504	7.4	109
239	Strain rate-dependent deformation in bulk metallic glasses. <i>Intermetallics</i> , 2002 , 10, 1177-1182	3.5	104
238	Solid-state foaming of titanium by superplastic expansion of argon-filled pores. <i>Journal of Materials Research</i> , 2001 , 16, 1508-1519	2.5	101
237	Connectivity and percolation in simulated grain-boundary networks. <i>Philosophical Magazine</i> , 2003 , 83, 711-726	1.6	99
236	Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. <i>Acta Materialia</i> , 2011 , 59, 7554-7563	8.4	97
235	Oligocrystalline Shape Memory Alloys. Advanced Functional Materials, 2012, 22, 2094-2099	15.6	96
234	Corrosion of nanocrystalline NiW alloys in alkaline and acidic 3.5wt.% NaCl solutions. <i>Corrosion Science</i> , 2011 , 53, 1066-1071	6.8	95
233	Stability criteria for nanocrystalline alloys. <i>Acta Materialia</i> , 2017 , 132, 128-137	8.4	93
232	Nanoindentation and contact-mode imaging at high temperatures. <i>Journal of Materials Research</i> , 2006 , 21, 725-736	2.5	91
231	The Mohrtoulomb criterion from unit shear processes in metallic glass. <i>Intermetallics</i> , 2004 , 12, 1159-1	1 <u>65</u>	86
230	Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. <i>Acta Materialia</i> , 2012 , 60, 282-292	8.4	80
229	Nanoscale segregation behavior and high-temperature stability of nanocrystalline W20at.% Ti. <i>Acta Materialia</i> , 2014 , 73, 128-138	8.4	79
228	Hot nanoindentation in inert environments. <i>Review of Scientific Instruments</i> , 2010 , 81, 073901	1.7	78
227	Solute distribution in nanocrystalline Ni W alloys examined through atom probe tomography. <i>Philosophical Magazine</i> , 2006 , 86, 4459-4475	1.6	76
226	Towards an integrated materials characterization toolbox. <i>Journal of Materials Research</i> , 2011 , 26, 1341	-1.383	75

(2010-2003)

225	Atomistic simulation of strain-induced amorphization. <i>Applied Physics Letters</i> , 2003 , 82, 2017-2019	3.4	74
224	3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. <i>Materials Today</i> , 2018 , 21, 697-702	21.8	73
223	Diffusion on grain boundary networks: Percolation theory and effective medium approximations. <i>Acta Materialia</i> , 2006 , 54, 4709-4720	8.4	72
222	Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. <i>Physical Review B</i> , 2014 , 89,	3.3	71
221	Hardening of a metallic glass during cyclic loading in the elastic range. <i>Applied Physics Letters</i> , 2008 , 92, 171911	3.4	71
220	Electrodeposited AllMn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. <i>Acta Materialia</i> , 2009 , 57, 3810-3822	8.4	70
219	Incipient plasticity during nanoindentation at elevated temperatures. <i>Applied Physics Letters</i> , 2004 , 85, 1362-1364	3.4	68
218	Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. <i>Journal of Applied Physics</i> , 2013 , 114, 053503	2.5	67
217	The Hall P etch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications. <i>Applied Physics Letters</i> , 2008 , 93, 171916	3.4	66
216	Improved representations of misorientation information for grain boundary science and engineering. <i>Progress in Materials Science</i> , 2012 , 57, 1383-1425	42.2	65
215	Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. <i>Acta Materialia</i> , 2015 , 95, 145-155	8.4	64
214	Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations. <i>Philosophical Magazine</i> , 2010 , 90, 1373-1390	1.6	63
213	Mechanics of indentation of plastically graded materials II: Experiments on nanocrystalline alloys with grain size gradients. <i>Journal of the Mechanics and Physics of Solids</i> , 2008 , 56, 172-183	5	62
212	Driven alloys in the athermal limit. <i>Physical Review Letters</i> , 2003 , 91, 235505	7.4	62
211	Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. <i>Physical Review B</i> , 2009 , 80,	3.3	60
210	Shape memory and superelasticity in polycrystalline CuAlNi microwires. <i>Applied Physics Letters</i> , 2009 , 95, 171906	3.4	58
209	Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD). <i>Acta Materialia</i> , 2006 , 54, 2451-2462	8.4	58
208	Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. <i>Physical Review B</i> , 2010 , 81,	3.3	57

207	Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. <i>Scripta Materialia</i> , 2007 , 57, 253-256	5.6	57
206	Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. <i>Acta Materialia</i> , 2005 , 53, 4323-4335	8.4	57
205	Nanoscale strength distribution in amorphous versus crystalline metals. <i>Journal of Materials Research</i> , 2010 , 25, 2251-2263	2.5	56
204	Whisker alignment of TiBAlBV/TiB composites during deformation by transformation superplasticity. <i>International Journal of Plasticity</i> , 2001 , 17, 317-340	7.6	56
203	Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars. <i>Scripta Materialia</i> , 2015 , 101, 40-43	5.6	52
202	Nanocrystalline Materials at Equilibrium: A Thermodynamic Review. <i>Jom</i> , 2015 , 67, 2834-2843	2.1	52
201	Superelastic cycling of CuAlNi shape memory alloy micropillars. <i>Acta Materialia</i> , 2012 , 60, 4093-4106	8.4	52
200	Atomistic simulation of slow grain boundary motion. <i>Physical Review Letters</i> , 2011 , 106, 045503	7.4	52
199	Abrasive wear response of nanocrystalline NiW alloys across the HallPetchbreakdown. <i>Wear</i> , 2013 , 298-299, 120-126	3.5	51
198	Accelerated sintering in phase-separating nanostructured alloys. <i>Nature Communications</i> , 2015 , 6, 6858	17.4	51
197	Percolation and statistical properties of low- and high-angle interface networks in polycrystalline ensembles. <i>Physical Review B</i> , 2004 , 69,	3.3	48
196	Materials selection considerations for high entropy alloys. <i>Scripta Materialia</i> , 2017 , 138, 145-150	5.6	47
195	Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. <i>International Journal of Refractory Metals and Hard Materials</i> , 2018 , 73, 22-28	4.1	47
194	Nanoindentation behavior and deformed microstructures in coarse-grained magnesium alloys. <i>Scripta Materialia</i> , 2013 , 68, 416-419	5.6	47
193	Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. <i>Acta Materialia</i> , 2007 , 55, 3059-3071	8.4	47
192	Atomistic mechanisms of cyclic hardening in metallic glass. <i>Applied Physics Letters</i> , 2012 , 100, 251909	3.4	46
191	Mechanically driven grain boundary relaxation: a mechanism for cyclic hardening in nanocrystalline Ni. <i>Philosophical Magazine Letters</i> , 2012 , 92, 20-28	1	46
190	Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. <i>Scripta Materialia</i> , 2008 , 59, 1218-1221	5.6	46

(2019-2016)

189	Crystal orientation dependence of the stress-induced martensitic transformation in zirconia-based shape memory ceramics. <i>Acta Materialia</i> , 2016 , 116, 124-135	8.4	46	
188	Melt-driven erosion in microparticle impact. <i>Nature Communications</i> , 2018 , 9, 5077	17.4	45	
187	Melting Can Hinder Impact-Induced Adhesion. <i>Physical Review Letters</i> , 2017 , 119, 175701	7.4	44	
186	High-strain-rate nanoindentation behavior of fine-grained magnesium alloys. <i>Journal of Materials Research</i> , 2012 , 27, 1295-1302	2.5	44	
185	Superelasticity in micro-scale shape memory ceramic particles. <i>Acta Materialia</i> , 2017 , 123, 255-263	8.4	42	
184	Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity. <i>Scripta Materialia</i> , 2007 , 56, 617-620	5.6	42	
183	Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. <i>Philosophical Magazine Letters</i> , 2007 , 87, 581-587	1	42	
182	Non-isothermal transformation-mismatch plasticity: modeling and experiments on TiBAlBV. <i>Acta Materialia</i> , 2001 , 49, 199-210	8.4	41	
181	Role of topological constraints on the statistical properties of grain boundary networks. <i>Physical Review B</i> , 2002 , 66,	3.3	41	
180	Temperature dependence of the indentation size effect. <i>Journal of Materials Research</i> , 2010 , 25, 1225-	1229	40	
179	The generalized Mackenzie distribution: Disorientation angle distributions for arbitrary textures. <i>Acta Materialia</i> , 2009 , 57, 4186-4197	8.4	40	
178	Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys. <i>Acta Materialia</i> , 2018 , 144, 447-458	8.4	40	
177	Achieving Ultralow Wear with Stable Nanocrystalline Metals. <i>Advanced Materials</i> , 2018 , 30, e1802026	24	40	
176	Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W I r. <i>Journal of Materials Research</i> , 2015 , 30, 151-163	2.5	39	
175	Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer. <i>Applied Surface Science</i> , 2019 , 476, 528-532	6.7	39	
174	Spectrum of grain boundary segregation energies in a polycrystal. <i>Acta Materialia</i> , 2019 , 181, 228-237	8.4	38	
173	Phase strength effects on chemical mixing in extensively deformed alloys. <i>Acta Materialia</i> , 2015 , 82, 123-136	8.4	37	
172	Response to Comment on Adiabatic shear instability is not necessary for adhesion in cold spray Scripta Materialia, 2019 , 162, 515-519	5.6	37	

171	Geometric considerations for diffusion in polycrystalline solids. <i>Journal of Applied Physics</i> , 2007 , 101, 063524	2.5	36
170	Melt-driven mechanochemical phase transformations in moderately exothermic powder´mixtures. <i>Nature Materials</i> , 2016 , 15, 1280-1286	27	35
169	Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. <i>Acta Materialia</i> , 2013 , 61, 5618-5625	8.4	35
168	Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations. <i>Physical Review B</i> , 2011 , 84,	3.3	35
167	Symmetries in the representation of grain boundary-plane distributions. <i>Philosophical Magazine</i> , 2013 , 93, 524-573	1.6	34
166	Hyperspherical harmonics for the representation of crystallographic texture. <i>Acta Materialia</i> , 2008 , 56, 6141-6155	8.4	34
165	Enhanced densification of metal powders by transformation-mismatch plasticity. <i>Acta Materialia</i> , 2000 , 48, 1639-1653	8.4	34
164	Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. <i>Journal of Materials Research</i> , 2011 , 26, 2461-2469	2.5	33
163	Three-dimensional shear transformation zone dynamics model for amorphous metals. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2010 , 18, 065009	2	32
162	Solute interaction effects on grain boundary segregation in ternary alloys. <i>Acta Materialia</i> , 2018 , 161, 285-294	8.4	31
161	Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600. <i>Surface Science</i> , 2003 , 544, 183-192	1.8	30
160	Combination rule for deviant CSL grain boundaries at triple junctions. <i>Acta Materialia</i> , 2003 , 51, 3731-37	7 -8 34	30
159	Nonrandom percolation behavior of grain boundary networks in high-Tc superconductors. <i>Applied Physics Letters</i> , 2003 , 83, 3755-3757	3.4	30
158	Sputtered HfTi nanostructures: A segregation and high-temperature stability study. <i>Acta Materialia</i> , 2016 , 108, 8-16	8.4	29
157	A survey of ab-initio calculations shows that segregation-induced grain boundary embrittlement is predicted by bond-breaking arguments. <i>Scripta Materialia</i> , 2016 , 113, 55-58	5.6	29
156	Solid-state foaming of titanium by hydrogen-induced internal-stress superplasticity. <i>Scripta Materialia</i> , 2003 , 49, 879-883	5.6	29
155	In situ measurements of surface tension-driven shape recovery in a metallic glass. <i>Scripta Materialia</i> , 2009 , 60, 1145-1148	5.6	27
154	Preferred nanocrystalline configurations in ternary and multicomponent alloys. <i>Scripta Materialia</i> , 2017 , 127, 136-140	5.6	26

(2001-2007)

153	Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement. Journal of Materials Research, 2007 , 22, 1564-1573	2.5	25	
152	Adhesion strength of titanium particles to alumina substrates: A combined cold spray and LIPIT study. Surface and Coatings Technology, 2019, 361, 403-412	4.4	24	
151	Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 1277-1283	6	24	
150	Effect of crystal orientation on incipient plasticity during nanoindentation of magnesium. <i>Acta Materialia</i> , 2017 , 139, 21-29	8.4	24	
149	Material hardness at strain rates beyond 106 sll via high velocity microparticle impact indentation. <i>Scripta Materialia</i> , 2020 , 177, 198-202	5.6	24	
148	Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries. <i>Acta Materialia</i> , 2018 , 161, 194-206	8.4	24	
147	Tool steel coatings based on niobium carbide and carbonitride compounds. <i>Surface and Coatings Technology</i> , 2012 , 207, 472-479	4.4	23	
146	Critical length scales for the deformation of amorphous metals containing nanocrystals. <i>Philosophical Magazine Letters</i> , 2007 , 87, 603-611	1	23	
145	Topological and chemical arrangement of binary alloys during severe deformation. <i>Journal of Applied Physics</i> , 2004 , 95, 4815-4822	2.5	23	
144	A coupled kinetic Monte Carlofinite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys. <i>Acta Materialia</i> , 2015 , 83, 431-447	8.4	22	
143	Validated numerical modeling of galvanic corrosion of zinc and aluminum coatings. <i>Corrosion Science</i> , 2014 , 88, 226-233	6.8	22	
142	Ultrahigh superelastic damping at the nano-scale: A robust phenomenon to improve smart MEMS devices. <i>Acta Materialia</i> , 2019 , 166, 346-356	8.4	22	
141	Combinatorial study of thermal stability in ternary nanocrystalline alloys. <i>Acta Materialia</i> , 2020 , 188, 40-48	8.4	21	
140	A continuous and one-to-one coloring scheme for misorientations. <i>Acta Materialia</i> , 2011 , 59, 554-562	8.4	21	
139	Thickness of Anodic Titanium Oxides as a Function of Crystallographic Orientation of the Substrate. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 2143-216.	4 7 ·3	21	
138	Learning grain boundary segregation energy spectra in polycrystals. <i>Nature Communications</i> , 2020 , 11, 6376	17.4	20	
137	Residual stress in electrodeposited nanocrystalline nickel-tungsten coatings. <i>Journal of Materials Research</i> , 2012 , 27, 1271-1284	2.5	20	
136	Pressure-induced transformation plasticity of H(2)O ice. <i>Physical Review Letters</i> , 2001 , 86, 668-71	7.4	20	

135	Grain boundary segregation beyond the dilute limit: Separating the two contributions of site spectrality and solute interactions. <i>Acta Materialia</i> , 2020 , 199, 63-72	8.4	20
134	In-situ studies on martensitic transformation and high-temperature shape memory in small volume zirconia. <i>Acta Materialia</i> , 2017 , 134, 257-266	8.4	19
133	Effects of surface diffusion on high temperature selective emitters. <i>Optics Express</i> , 2015 , 23, 9979-93	3.3	19
132	Surface oxide and hydroxide effects on aluminum microparticle impact bonding. <i>Acta Materialia</i> , 2020 , 197, 28-39	8.4	19
131	The uncorrelated triple junction distribution function: Towards grain boundary network design. <i>Acta Materialia</i> , 2013 , 61, 2863-2873	8.4	19
130	Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. <i>Ultramicroscopy</i> , 2011 , 111, 1062-72	3.1	19
129	Grain boundary segregation in AlMn electrodeposits prepared from ionic liquid. <i>Journal of Materials Science</i> , 2016 , 51, 438-448	4.3	18
128	Computational design and optimization of multilayered and functionally graded corrosion coatings. <i>Corrosion Science</i> , 2013 , 77, 297-307	6.8	18
127	Molecular simulation of amorphization by mechanical alloying. <i>Acta Materialia</i> , 2004 , 52, 2123-2132	8.4	18
126	Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests. Surface and Coatings Technology, 2020 , 403, 126386	4.4	18
125	Effect of Crystal Orientation on Nanoindentation Behavior in Magnesium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2016 , 47, 3227-3234	2.3	18
124	Nano-phase separation sintering in nanostructure-stable vs. bulk-stable alloys. <i>Acta Materialia</i> , 2018 , 145, 123-133	8.4	18
123	Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective. Journal of Materials Science, 2017 , 52, 4288-4298	4.3	17
122	Particle size effects in metallic microparticle impact-bonding. <i>Acta Materialia</i> , 2020 , 194, 40-48	8.4	17
121	Orientation dependence in superelastic Cu-Al-Mn-Ni micropillars. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 1205-1213	5.7	17
120	Hot nanoindentation of nanocrystalline NiW alloys. Scripta Materialia, 2009, 61, 1056-1059	5.6	17
119	Granular shape memory ceramic packings. Acta Materialia, 2017, 132, 455-466	8.4	16
118	Reduced cracking in polycrystalline ZrO2-CeO2 shape-memory ceramics by meeting the cofactor conditions. <i>Acta Materialia</i> , 2019 , 177, 230-239	8.4	16

117	Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2014 , 45, 3609-3618	2.3	16	
116	Influences of crystallographic texture and nanostructural features on corrosion properties of electrogalvanized and chromate conversion coatings. <i>Surface and Coatings Technology</i> , 2017 , 329, 120-	1 3 0 ¹	16	
115	Suppression of grain growth in nanocrystalline Bi2Te3 through oxide particle dispersions. <i>Journal of Applied Physics</i> , 2014 , 116, 173505	2.5	16	
114	Exploring grain boundary energy landscapes with the activation-relaxation technique. <i>Scripta Materialia</i> , 2013 , 68, 937-940	5.6	16	
113	Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys. <i>Physical Review Letters</i> , 2011 , 106, 085504	7.4	16	
112	Correlation-space description of the percolation transition in composite microstructures. <i>Physical Review E</i> , 2007 , 76, 041108	2.4	16	
111	Enhanced densification of zinc powders through thermal cycling. <i>Acta Materialia</i> , 2002 , 50, 1349-1358	8.4	16	
110	The role of W on the thermal stability of nanocrystalline NiTiWx thin films. <i>Acta Materialia</i> , 2018 , 142, 181-192	8.4	15	
109	Kinetic Monte Carlo simulations of nanocrystalline film deposition. <i>Journal of Applied Physics</i> , 2010 , 107, 073512	2.5	15	
108	Correlations beyond the nearest-neighbor level in grain boundary networks. <i>Scripta Materialia</i> , 2006 , 54, 1023-1028	5.6	15	
107	A high-throughput technique for determining grain boundary character non-destructively in microstructures with through-thickness grains. <i>Npj Computational Materials</i> , 2016 , 2,	10.9	15	
106	Mechanical alloying produces grain boundary segregation in FeMg powders. <i>Scripta Materialia</i> , 2020 , 180, 57-61	5.6	14	
105	A compilation of ab-initio calculations of embrittling potencies in binary metallic alloys. <i>Data in Brief</i> , 2016 , 6, 143-8	1.2	14	
104	Anomalous grain refinement trends during mechanical milling of Bi2Te3. <i>Acta Materialia</i> , 2014 , 75, 167	-187.29	14	
103	Finite Element Simulation of Hot Nanoindentation in Vacuum. Experimental Mechanics, 2013, 53, 1201-	12161	14	
102	Towards electroformed nanostructured aluminum alloys with high strength and ductility. <i>Journal of Materials Research</i> , 2012 , 27, 1638-1651	2.5	14	
101	Microparticle impact-bonding modes for mismatched metals: From co-deformation to splatting and penetration. <i>Acta Materialia</i> , 2020 , 199, 480-494	8.4	14	
100	Effect of twin boundaries on indentation behavior of magnesium alloys. <i>Journal of Alloys and Compounds</i> , 2016 , 685, 1016-1023	5.7	14	

99	Phase transitions in stable nanocrystalline alloys. <i>Journal of Materials Research</i> , 2017 , 32, 1993-2002	2.5	13
98	Surface roughness-controlled superelastic hysteresis in shape memory microwires. <i>Scripta Materialia</i> , 2014 , 82, 1-4	5.6	13
97	Tuning nanoscale grain size distribution in multilayered AlMn alloys. Scripta Materialia, 2012, 66, 194-1	97 5.6	13
96	Percolation of diffusionally evolved two-phase systems. <i>Physical Review E</i> , 2011 , 83, 021119	2.4	13
95	Pack aluminisation kinetics of nickel rods and foams. <i>Materials Science and Technology</i> , 2002 , 18, 326-3	32 1.5	13
94	Hardness and Abrasion Resistance of Nanocrystalline Nickel Alloys Near the Hall-Petch Breakdown Regime. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 740, 1		13
93	The Transition From Rebound to Bonding in High-Velocity Metallic Microparticle Impacts: Jetting-Associated Power-Law Divergence. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2020 , 87,	2.7	13
92	Global optimization for accurate determination of EBSD pattern centers. <i>Ultramicroscopy</i> , 2020 , 209, 112876	3.1	13
91	Shape memory zirconia foams through ice templating. <i>Scripta Materialia</i> , 2017 , 135, 50-53	5.6	12
90	Inferring grain boundary structure p roperty relations from effective property measurements. Journal of Materials Science, 2015 , 50, 6907-6919	4.3	12
89	Enhanced shape memory and superelasticity in small-volume ceramics: a perspective on the controlling factors. <i>MRS Communications</i> , 2017 , 7, 747-754	2.7	12
88	Percolation of diffusional creep: a new universality class. <i>Physical Review Letters</i> , 2007 , 98, 035701	7.4	12
87	Internal stress plasticity due to chemical stresses. <i>Acta Materialia</i> , 2001 , 49, 3387-3400	8.4	12
86	Melt-cast microfibers of Cu-based shape memory alloy adopt a favorable texture for superelasticity. <i>Scripta Materialia</i> , 2016 , 117, 46-50	5.6	12
85	Site-specific study of jetting, bonding, and local deformation during high-velocity metallic microparticle impact. <i>Acta Materialia</i> , 2021 , 202, 159-169	8.4	12
84	Synthesis of monodisperse CeO2᠒rO2 particles exhibiting cyclic superelasticity over hundreds of cycles. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 4199-4208	3.8	11
83	The nanocrystalline thermoelectric compound Bi2Te3 forms by a particle-wise explosive reaction during mechanical alloying. <i>Scripta Materialia</i> , 2011 , 65, 516-519	5.6	11
82	Connectivity of CSL Grain Boundaries and the Role of Deviations from Exact Coincidence. International Journal of Materials Research, 2003, 94, 323-328		11

(2000-2017)

81	Spontaneous solid-state foaming of nanocrystalline thermoelectric compounds at elevated temperatures. <i>Nano Energy</i> , 2017 , 36, 223-232	17.1	10
80	Thermally induced martensitic transformations in Cu-based shape memory alloy microwires. Journal of Materials Science, 2015 , 50, 7473-7487	4.3	10
79	The triple junction hull: Tools for grain boundary network design. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 69, 2-13	5	10
78	Expressing Crystallographic Textures through the Orientation Distribution Function: Conversion between Generalized Spherical Harmonic and Hyperspherical Harmonic Expansions. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 2590-2602	2.3	10
77	Representations of Texture 2009 , 35-51		10
76	Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure. <i>MRS Bulletin</i> , 2021 , 46, 225-235	3.2	10
75	A compound unit method for incorporating ordered compounds into lattice models of alloys. <i>Computational Materials Science</i> , 2016 , 118, 172-179	3.2	9
74	Diffusion of tungsten in chromium: Experiments and atomistic modeling. <i>Journal of Alloys and Compounds</i> , 2014 , 611, 433-439	5.7	9
73	Microstructure and fracture of anomalous eutectic silicon-disilicide composites. <i>Intermetallics</i> , 2011 , 19, 1661-1673	3.5	9
72	Effective transport properties of random composites: continuum calculations versus mapping to a network. <i>Physical Review E</i> , 2009 , 80, 040103	2.4	9
71	Coble creep in heterogeneous materials: The role of grain boundary engineering. <i>Physical Review B</i> , 2007 , 76,	3.3	9
70	Towards the reliable calculation of residence time for off-lattice kinetic Monte Carlo simulations. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2016 , 24, 065014	2	9
69	Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy. <i>Physical Review Letters</i> , 2018 , 121, 145503	7.4	9
68	Grain growth and second-phase precipitation in nanocrystalline aluminumthanganese electrodeposits. <i>Journal of Materials Science</i> , 2018 , 53, 3709-3719	4.3	8
67	Stability of ternary nanocrystalline alloys in the PtPdAu system. <i>Materialia</i> , 2019 , 8, 100449	3.2	8
66	Cyclic martensitic transformations and damage evolution in shape memory zirconia: Single crystals vs polycrystals. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 4678-4690	3.8	7
65	Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. <i>Applied Physics Letters</i> , 2005 , 87, 241904	3.4	7
64	Thermal-cycling creep of ETiAl-based alloys. <i>Intermetallics</i> , 2000 , 8, 339-343	3.5	7

63	Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys. <i>Acta Materialia</i> , 2021 , 213, 116950	8.4	7
62	Correlated grain-boundary distributions in two-dimensional networks. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2007 , 63, 315-28		6
61	FeNiCoAlTaB superelastic and shape-memory wires with oligocrystalline grain structure. <i>Scripta Materialia</i> , 2020 , 188, 1-5	5.6	6
60	In situ observations of jetting in the divergent rebound regime for high-velocity metallic microparticle impact. <i>Applied Physics Letters</i> , 2020 , 117, 134105	3.4	6
59	Resolving pseudosymmetry in tetragonal ZrO2 using electron backscatter diffraction with a modified dictionary indexing approach. <i>Journal of Applied Crystallography</i> , 2020 , 53, 1060-1072	3.8	6
58	Texture mediated grain boundary network design in three dimensions. <i>Mechanics of Materials</i> , 2018 , 118, 94-105	3.3	6
57	Nanostructure stability and nano-phase separation sintering in the titanium chagnesium system. <i>Materialia</i> , 2018 , 1, 89-98	3.2	6
56	The effect of substrate temperature on the critical velocity in microparticle impact bonding. <i>Applied Physics Letters</i> , 2021 , 119, 011903	3.4	6
55	Modeling localized corrosion with an effective medium approximation. <i>Corrosion Science</i> , 2017 , 116, 53-65	6.8	5
54	Micropillar compression testing of powders. <i>Journal of Materials Science</i> , 2015 , 50, 7058-7063	4.3	5
53	Alloy design as an inverse problem of cluster expansion models. <i>Acta Materialia</i> , 2017 , 139, 254-260	8.4	5
52	The topology of homophase misorientation spaces. <i>Philosophical Magazine</i> , 2011 , 91, 1489-1508	1.6	5
51	Superplastic deformation induced by cyclic hydrogen charging. <i>Journal of Applied Physics</i> , 2008 , 103, 103518	2.5	5
50	Ternary alloying additions and multilayering as strategies to enhance the galvanic protection ability of Al-Zn coatings electrodeposited from ionic liquid solution. <i>Electrochimica Acta</i> , 2016 , 211, 860-870	6.7	5
49	Thermodynamics and design of nanocrystalline alloys using grain boundary segregation spectra. <i>Acta Materialia</i> , 2021 , 217, 117177	8.4	5
48	W-based amorphous phase stable to high temperatures. <i>Acta Materialia</i> , 2015 , 85, 331-342	8.4	4
47	Elasticity of Random Multiphase Materials: Percolation of the Stiffness Tensor. <i>Journal of Statistical Physics</i> , 2016 , 162, 232-241	1.5	4
46	Grain growth and structural relaxation of nanocrystalline Bi2Te3. <i>Journal of Applied Physics</i> , 2014 , 116, 153502	2.5	4

(2021-2007)

45	Strategy to Improve the High-Temperature Mechanical Properties of Cr-Alloy Coatings. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 1367-137	′ð ^{.3}	4
44	Texture mediated grain boundary network design in two dimensions. <i>Journal of Materials Research</i> , 2016 , 31, 1171-1184	2.5	4
43	Grain Boundary Networks 2009 , 201-214		4
42	Sub-scale ballistic testing of an ultrafine grained tungsten alloy into concrete targets. <i>International Journal of Impact Engineering</i> , 2016 , 91, 1-5	4	3
41	Representation of single-axis grain boundary functions. <i>Acta Materialia</i> , 2013 , 61, 3068-3081	8.4	3
40	Grain boundary networks in nanocrystalline alloys from atom probe tomography quantization and autocorrelation mapping. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2302-23	1018 ⁶	3
39	Role of grain constraint on the martensitic transformation in ceria-doped zirconia. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 1156-1168	3.8	3
38	Direct Electric-Field Induced Phase Transformation in Paraelectric Zirconia via Electrical Susceptibility Mismatch. <i>Physical Review Letters</i> , 2021 , 126, 015701	7.4	3
37	Kissinger-Style Kinetic Analysis for Sintering Dilatometry Data. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2021 , 52, 4479-4487	2.3	3
36	Spreading Frost Under the Microscope. <i>Physics Magazine</i> , 2020 , 13,	1.1	2
35	Wear: Achieving Ultralow Wear with Stable Nanocrystalline Metals (Adv. Mater. 32/2018). <i>Advanced Materials</i> , 2018 , 30, 1870242	24	2
34	Microstructure and mechanical properties of electrodeposited AllMmx/AllMmy nanostructured multilayers. <i>Journal of Materials Research</i> , 2014 , 29, 2229-2239	2.5	2
33	Analytical homogenization method for periodic composite materials. <i>Physical Review B</i> , 2009 , 79,	3.3	2
32	Plasticity in Nanocrystalline and Amorphous Metals: Similarities at the Atomic Scale. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 806, 309		2
31	An atom probe tomography study of grain boundary segregation in nanocrystalline Ni-W. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 903, 1		2
30	Dynamic steady state during cyclic diffusional phase transformations. <i>Journal of Applied Physics</i> , 2002 , 91, 9083-9090	2.5	2
29	Approaches to modelling chemically induced transformation superplasticity. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2002 , 82, 2441-2459		2
28	Crystal orientation and detector distance effects on resolving pseudosymmetry by electron backscatter diffraction. <i>Journal of Applied Crystallography</i> , 2021 , 54, 513-522	3.8	2

27	Grain-size effect on cracking accumulation in yttria-doped zirconia ceramics during cyclic martensitic transformations. <i>Acta Materialia</i> , 2021 , 209, 116789	8.4	2
26	The mechanism of thermal transformation hysteresis in ZrO2-CeO2 shape-memory ceramics. <i>Acta Materialia</i> , 2021 , 213, 116972	8.4	2
25	Nanoindentation: High Temperature 2016 ,		2
24	An off-lattice kinetic Monte Carlo investigation of the kinetic properties of the B (210) grain boundary in copper. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2019 , 27, 075005	2	1
23	Effect of a Rising R-Curve on the Sliding Wear of Silicon-Disilicide In Situ Composites. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1406-1413	3.8	1
22	Tin and zinc microparticle impacts above the critical adhesion velocity. <i>Surface and Coatings Technology</i> , 2022 , 432, 128053	4.4	1
21	Kinetic Monte Carlo Modeling of Nanomechanics in Amorphous Systems. <i>Springer Series in Materials Science</i> , 2016 , 441-468	0.9	1
20	The Structural Evolution and Densification Mechanisms of Nanophase Separation Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4946	2.3	1
19	Atomistic Assessment of Solute-Solute Interactions during Grain Boundary Segregation. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
18	Additional hindrances to metallurgical bonding from impurities during microparticle impact. <i>Surface and Coatings Technology</i> , 2022 , 433, 128114	4.4	O
17	Grain size dependencies of intergranular solute segregation in nanocrystalline materials. <i>Acta Materialia</i> , 2022 , 226, 117614	8.4	0
16	Oxide layer delamination: An energy dissipation mechanism during high-velocity microparticle impacts. <i>Applied Surface Science</i> , 2022 , 574, 151673	6.7	O
15	Optimization of the Mo-Cr binary system for Nanophase Separation Sintering. <i>Materialia</i> , 2022 , 22, 101	4 <u>3.0</u>	0
14	Fast finite element calculation of effective conductivity of random continuum microstructures: The recursive PoincarBteklov operator method. <i>Journal of Computational Physics</i> , 2017 , 342, 1-12	4.1	
13	Nanoindentation: High Temperature 2010 , 1-6		
12	Thermo-Mechanical behavior at Nano-Scale and Size Effects in Shape Memory Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1297, 83		
11	Modeling and Simulation of the Percolation Problem in High-Tc Superconductors: Role of Crystallographic Constraints on Grain Boundary Connectivity. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 819, N7.7.1		
10	Optical and Nanomechanical Characterization of an Omnidirectional Reflector Encompassing 850 nm Wavelength. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 817, 112		

LIST OF PUBLICATIONS

- Strength Variations during Mechanical Alloying Through the Nanostructural Range. Materials 9 Research Society Symposia Proceedings, 2003, 791, 1 Processing and Properties of Nanostructured Alloy Coatings in the Binary Ni-Cr System. Materials Research Society Symposia Proceedings, **2005**, 903, 1 Incorporating the Element of Stochasticity in Coarse-Grained Modeling of Materials Mechanics 2020, 1223-1236 Amorphization of Nanolaminates during Severe Plastic Deformation: Molecular Simulations in the Cu-Zr System. Materials Research Society Symposia Proceedings, 2003, 778, 131 OS0120-150 Deformation behavior during indentation in magnesium. The Proceedings of the О 5 Materials and Mechanics Conference, 2015, 2015, OS0120-15- OS0120-15 GS0303-209 Texture evolution modeling of Ni alloys by crystal plasticity including twinning mechanism. The Proceedings of the Materials and Mechanics Conference, **2015**, 2015, GS0303-20-GS0303-20 Study on behaviors of crystal reorientation and twinning in Ni alloys using crystal plasticity. The O 3 Proceedings of the Materials and Mechanics Conference, 2016, 2016, OS08-06
 - Incorporating the Element of Stochasticity in Coarse-Grained Modeling of Materials Mechanics **2018**, 1-14

Science and Engineering, **2018**, 26, 015007

Stress-dependence of kinetic transitions at atomistic defects. Modelling and Simulation in Materials

2