
Simon Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576346/publications.pdf Version: 2024-02-01

SIMON HADVEY

#	Article	IF	CITATIONS
1	Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA). Energy, 2011, 36, 4609-4615.	4.5	84
2	CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels. Energy, 2010, 35, 1101-1106.	4.5	60
3	Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios. Applied Energy, 2013, 101, 203-212.	5.1	53
4	Impact of choice of CO ₂ separation technology on thermo-economic performance of Bio-SNG production processes. International Journal of Energy Research, 2014, 38, 299-318.	2.2	49
5	Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster. Energy, 2014, 65, 209-220.	4.5	45
6	Framework methodology for increased energy efficiency and renewable feedstock integration in in in in in in	5.1	43
7	Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models. Sustainability, 2020, 12, 7126.	1.6	42
8	Extending existing combined heat and power plants for synthetic natural gas production. International Journal of Energy Research, 2012, 36, 670-681.	2.2	35
9	Optimization of process configuration and strain selection for microalgae-based biodiesel production. Bioresource Technology, 2015, 193, 25-34.	4.8	32
10	Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters. Energy, 2013, 55, 5-14.	4.5	31
11	Energy efficiency investments in Kraft pulp mills given uncertain climate policy. International Journal of Energy Research, 2007, 31, 486-505.	2.2	30
12	From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters. Energy, 2015, 90, 163-172.	4.5	30
13	Economic potential for substitution of fossil fuels with liquefied biomethane in Swedish iron and steel industry – Synergy and competition with other sectors. Energy Conversion and Management, 2020, 209, 112641.	4.4	27
14	Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production. Biomass Conversion and Biorefinery, 2013, 3, 337-352.	2.9	24
15	Biomass gasification-based syngas production for a conventional oxo synthesis plant—greenhouse gas emission balances and economic evaluation. Journal of Cleaner Production, 2015, 99, 192-205.	4.6	24
16	Biomass Gasification-Based Syngas Production for a Conventional Oxo Synthesis Plant—Process Modeling, Integration Opportunities, and Thermodynamic Performance. Energy & Fuels, 2014, 28, 4075-4087.	2.5	23
17	Bark as feedstock for dual fluidized bed gasifiers-Operability, efficiency, and economics. International Journal of Energy Research, 2019, 43, 1171-1190.	2.2	23
18	Comparison of options for utilization of a potential steam surplus at kraft pulp mills-Economic performance and CO ₂ emissions. International Journal of Energy Research, 2013, 37, 1017-1035.	2.2	21

SIMON HARVEY

#	Article	IF	CITATIONS
19	Comparative thermodynamic analysis of biomass gasification-based light olefin production using methanol or DME as the platform chemical. Chemical Engineering Research and Design, 2016, 115, 182-194.	2.7	20
20	Bottom–Up Assessment Framework for Electrification Options in Energy-Intensive Process Industries. Frontiers in Energy Research, 2020, 8, .	1.2	20
21	A Steam Utility Network Model for the Evaluation of Heat Integration Retrofits – A Case Study of an Oil Refinery. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 5, 560-578.	0.9	16
22	Targeting capital cost of excess heat collection systems in complex industrial sites for district heating applications. Energy, 2015, 91, 465-478.	4.5	15
23	Value chains for integrated production of liquefied bio-SNG at sawmill sites – Techno-economic and carbon footprint evaluation. Applied Energy, 2017, 206, 1590-1608.	5.1	15
24	Holistic methodological framework for assessing the benefits of delivering industrial excess heat to a district heating network. International Journal of Energy Research, 2020, 44, 2634-2651.	2.2	15
25	Characterization and visualization of industrial excess heat for different levels of onâ€site process heat recovery. International Journal of Energy Research, 2019, 43, 7988-8003.	2.2	13
26	Renewable OME from biomass and electricity—Evaluating carbon footprint and energy performance. Energy Science and Engineering, 2020, 8, 2587-2598.	1.9	13
27	Lifecycle energy and greenhouse gas emissions analysis of biomassâ€based 2â€ethylhexanol as an alternative transportation fuel. Energy Science and Engineering, 2019, 7, 851-867.	1.9	12
28	Integration of algaeâ€based biofuel production with an oil refinery: Energy and carbon footprint assessment. International Journal of Energy Research, 2020, 44, 10860-10877.	2.2	12
29	A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks. Energies, 2020, 13, 1472.	1.6	11
30	Efficient heat integration of industrial CO2 capture and district heating supply. International Journal of Greenhouse Gas Control, 2022, 118, 103689.	2.3	10
31	Assessing the value of pulp mill biomass savings in a climate change conscious economy. Energy Policy, 2006, 34, 2330-2343.	4.2	8
32	Potential for Negative Emissions by Carbon Capture and Storage From a Novel Electric Plasma Calcination Process for Pulp and Paper Mills. Frontiers in Climate, 2021, 3, .	1.3	8
33	A feasibility study of improved heat recovery and excess heat export at a Swedish chemical complex site. International Journal of Energy Research, 2018, 42, 1580-1593.	2.2	7
34	Life-cycle impact assessment methods for physical energy scarcity: considerations and suggestions. International Journal of Life Cycle Assessment, 2021, 26, 2339-2354.	2.2	7
35	The role of energy supply in abatement cost curves for CO2 capture from process industry – A case study of a Swedish refinery. Applied Energy, 2022, 319, 119273.	5.1	7
36	Operability and Technical Implementation Issues Related to Heat Integration Measures—Interview Study at an Oil Refinery in Sweden. Energies, 2020, 13, 3478.	1.6	6

SIMON HARVEY

#	Article	IF	CITATIONS
37	Studying the Role of System Aggregation in Energy Targeting: A Case Study of a Swedish Oil Refinery. Energies, 2020, 13, 958.	1.6	5
38	Double Yields and Negative Emissions? Resource, Climate and Cost Efficiencies in Biofuels With Carbon Capture, Storage and Utilization. Frontiers in Energy Research, 0, 10, .	1.2	5
39	Costs vs. Flexibility of Process Heat Recovery Solutions Considering Short-Term Process Variability and Uncertain Long-Term Development. Frontiers in Chemical Engineering, 2021, 3, .	1.3	4
40	A computational tool for guiding retrofit projects of industrial heat recovery systems subject to variation in operating conditions. Applied Thermal Engineering, 2021, 182, 115648.	3.0	3
41	Assessing the value of a diversified by-product portfolio to allow for increased production flexibility in pulp mills. Nordic Pulp and Paper Research Journal, 2020, 35, 533-558.	0.3	3
42	Electricity Generation from Low and Medium Temperature Industrial Excess Heat in the Kraft Pulp and Paper Industry. Energies, 2021, 14, 8499.	1.6	3
43	Forest residues gasification integrated with electrolysis for production of SNG – modelling and assessment. Computer Aided Chemical Engineering, 2018, 44, 109-114.	0.3	2