Isabel Dominguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating the basic sciences in medical curricula: focus on the basic scientists. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 119-123.	1.6	17
2	Down-Regulation of CK2α Leads toUp-Regulation of the Cyclin-Dependent Kinase Inhibitor p27KIP1 in Conditions Unfavorable for the Growth of Myoblast Cells. Cellular Physiology and Biochemistry, 2020, 54, 1177-1198.	1.6	3
3	Down-regulation of CK2α correlates with decreased expression levels of DNA replication minichromosome maintenance protein complex (MCM) genes. Scientific Reports, 2019, 9, 14581.	3.3	5
4	Integrating the Educators: Outcomes of a Pilot Program to Prime Basic Science Medical Educators for Success in Integrated Curricula. Medical Science Educator, 2019, 29, 637-642.	1.5	2
5	GPCR-independent activation of G proteins promotes apical cell constriction in vivo. Journal of Cell Biology, 2019, 218, 1743-1763.	5.2	21
6	Bridging The Foundational linical Science Divide By Priming PhD Trainees To Teach In Integrated Curricula: Pilot Program Outcomes. FASEB Journal, 2019, 33, 607.5.	0.5	0
7	Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10319-E10328.	7.1	21
8	Comparative Analysis of Non-viral Transfection Methods in Mouse Embryonic Fibroblast Cells. Journal of Biomolecular Techniques, 2017, 28, 67-74.	1.5	22
9	CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals, 2017, 10, 18.	3.8	120
10	Cancer-type dependent expression of CK2 transcripts. PLoS ONE, 2017, 12, e0188854.	2.5	57
11	Dominant-negative Cα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease. Science Signaling, 2016, 9, ra37.	3.6	28
12	CK2 in Organ Development, Physiology, and Homeostasis. , 2015, , 59-79.		0
13	Mining CK2 in Cancer. PLoS ONE, 2014, 9, e115609.	2.5	127
14	Cell cycle-dependent chromatin shuttling of HBO1–JADE1 histone acetyl transferase (HAT) complex. Cell Cycle, 2014, 13, 1885-1901.	2.6	21
15	Two distinct phosphorylation events govern the function of muscle FHOD3. Cellular and Molecular Life Sciences, 2013, 70, 893-908.	5.4	41
16	Asymmetric Localization of Ck2α During Xenopus Oogenesis. , 2013, 03, 11328.		1
17	Mitofusins 1 and 2 Are Essential for Postnatal Metabolic Remodeling in Heart. Circulation Research, 2012, 111, 1012-1026.	4.5	198
18	CK2α is essential for embryonic morphogenesis. Molecular and Cellular Biochemistry, 2011, 356, 209-216.	3.1	32

ISABEL DOMINGUEZ

#	Article	IF	CITATIONS
19	Dynamic expression of a LEFâ€EGFP Wnt reporter in mouse development and cancer. Genesis, 2010, 48, 183-194.	1.6	21
20	Threonine 393 of β atenin regulates interaction with Axin. Journal of Cellular Biochemistry, 2009, 108, 52-63.	2.6	27
21	Protein Kinase CK2 in Health and Disease. Cellular and Molecular Life Sciences, 2009, 66, 1850-1857.	5.4	162
22	Gene targeting of CK2 catalytic subunits. Molecular and Cellular Biochemistry, 2008, 316, 141-147.	3.1	57
23	βâ€Arrestin and casein kinase 1/2 define distinct branches of non anonical WNT signalling pathways. EMBO Reports, 2008, 9, 1244-1250.	4.5	71
24	Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nature Cell Biology, 2008, 10, 1208-1216.	10.3	162
25	The Alpha Catalytic Subunit of Protein Kinase CK2 Is Required for Mouse Embryonic Development. Molecular and Cellular Biology, 2008, 28, 131-139.	2.3	193
26	A role for CK2α/β in Xenopus early embryonic development. Molecular and Cellular Biochemistry, 2005, 274, 125-131.	3.1	21
27	CK2 as a positive regulator of Wnt signalling and tumourigenesis. Molecular and Cellular Biochemistry, 2005, 274, 63-67.	3.1	122
28	Kinase-Inactive Glycogen Synthase Kinase 3β Promotes Wnt Signaling and Mammary Tumorigenesis. Cancer Research, 2005, 65, 5792-5801.	0.9	135
29	Oncogenic Signaling Pathways Activated in DMBA-Induced Mouse Mammary Tumors. Toxicologic Pathology, 2005, 33, 726-737.	1.8	143
30	Self-organization of vertebrate mesoderm based on simple boundary conditions. Developmental Dynamics, 2004, 231, 576-581.	1.8	33
31	Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Developmental Biology, 2004, 274, 110-124.	2.0	47
32	CK2 Phosphorylation of the Armadillo Repeat Region of β-Catenin Potentiates Wnt Signaling. Journal of Biological Chemistry, 2003, 278, 24018-24025.	3.4	150
33	Missing Links in GSK3 Regulation. Developmental Biology, 2001, 235, 303-313.	2.0	57
34	Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8498-8502.	7.1	299
35	Alterations in levels of different protein kinase C isotypes and their influence on behavior of squamous cell carcinoma of the oral cavity: ɛPKC, a novel prognostic factor for relapse and survival. Head and Neck, 1995, 17, 516-525.	2.0	43
36	Protein kinase C ζ isoform is critical for mitogenic signal transduction. Cell, 1993, 74, 555-563.	28.9	393

#	Article	IF	CITATIONS
37	The Wnt signaling network in cancer. , 0, , 222-255.		0