Radheshyam R Pawar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, characterization, and application of MOF@clay composite as a visible light-driven photocatalyst for Rhodamine B degradation. Chemosphere, 2022, 291, 132922.	8.2	20
2	A new perspective of functionalized MWCNT incorporated thin film nanocomposite hollow fiber membranes for the separation of various gases. Journal of Environmental Chemical Engineering, 2021, 9, 104774.	6.7	40
3	Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment. International Journal of Biological Macromolecules, 2020, 164, 3145-3154.	7.5	36
4	Synthesis and characterization of nylon 6 polymer nanocomposite using organically modified Indian bentonite. SN Applied Sciences, 2020, 2, 1.	2.9	6
5	Energy-resolved distribution of electron traps for O/S-doped carbon nitrides by reversed double-beam photoacoustic spectroscopy and the photocatalytic reduction of Cr(<scp>vi</scp>). Chemical Communications, 2020, 56, 3793-3796.	4.1	28
6	Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. Journal of Membrane Science, 2020, 609, 118212.	8.2	82
7	Template free mild hydrothermal synthesis of core–shell Cu ₂ O(Cu)@CuO visible light photocatalysts for <i>N</i> -acetyl- <i>para</i> -aminophenol degradation. Journal of Materials Chemistry A, 2019, 7, 20767-20777.	10.3	46
8	Synthesis of Saponite Based Nanocomposites to Improve the Controlled Oral Drug Release of Model Drug Quinine Hydrochloride Dihydrate. Pharmaceuticals, 2019, 12, 105.	3.8	16
9	Dye-sensitized Photocatalyst of Sepiolite for Organic Dye Degradation. Catalysts, 2019, 9, 235.	3.5	36
10	Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater. Journal of Molecular Liquids, 2019, 280, 230-237.	4.9	25
11	Pilot-scale produced super activated carbon with a nanoporous texture as an excellent adsorbent for the efficient removal of metanil yellow. Powder Technology, 2018, 333, 243-251.	4.2	9
12	Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. International Journal of Biological Macromolecules, 2018, 114, 1315-1324.	7.5	115
13	Optimization of solar degradation efficiency of bio-composting leachate using Nd: ZnO nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 201-211.	3.9	21
14	Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Applied Clay Science, 2018, 162, 339-350.	5.2	162
15	Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions. Journal of Molecular Liquids, 2017, 240, 497-503.	4.9	42
16	Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. International Journal of Environmental Science and Technology, 2017, 14, 2067-2076.	3.5	48
17	Arsenate and phosphate removal from water using Fe-sericite composite beads in batch and fixed-bed systems. Journal of Industrial and Engineering Chemistry, 2017, 47, 375-383.	5.8	41
18	Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acid-activated bentonite (ABn-NH) clay: towards enhancement of water vapor permeance and selectivity. Journal of Materials Chemistry A, 2017, 5, 20947-20958.	10.3	61

RADHESHYAM R PAWAR

#	Article	IF	CITATIONS
19	Binder-free production of 3D N-doped porous carbon cubes for efficient Pb2+ removal through batch and fixed bed adsorption. Journal of Cleaner Production, 2017, 168, 290-301.	9.3	29
20	Fe-sericite-alginate composite beads: Preparation characterization and eco-friendly application for removal of arsenate and lead from petroleum industry wastewater. , 2017, , .		0
21	Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate. Science of the Total Environment, 2016, 572, 1222-1230.	8.0	60
22	Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Journal of Environmental Management, 2016, 184, 585-595.	7.8	67
23	Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Journal of Industrial and Engineering Chemistry, 2016, 34, 213-223.	5.8	173
24	Preparation of activated carbon incorporated polysulfone membranes for dye separation. Membrane Water Treatment, 2016, 7, 477-493.	0.5	6
25	Clay catalysed rapid valorization of glycerol towards cyclic acetals and ketals. RSC Advances, 2015, 5, 83985-83996.	3.6	27
26	Microwave-assisted rapid valorization of glycerol towards acetals and ketals. Chemical Engineering Journal, 2014, 235, 61-66.	12.7	47
27	Facile hard template approach for synthetic hectorite hollow microspheres. Materials Letters, 2014, 128, 121-124.	2.6	15
28	Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen. Applied Clay Science, 2014, 91-92, 63-69.	5.2	25
29	Template free synthesis of mesoporous hectorites: Efficient host for pH responsive drug delivery. International Journal of Pharmaceutics, 2013, 446, 145-152.	5.2	29
30	Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration. RSC Advances, 2012, 2, 8663.	3.6	201
31	Mesoporous synthetic hectorites: A versatile layered host with drug delivery application. Microporous and Mesoporous Materials, 2011, 142, 542-548.	4.4	42
32	Mechanical and thermal properties of polypropylene nanocomposites using organically modified Indian bentonite. Polymer Composites, 2010, 31, 399-404.	4.6	6
33	Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity. Applied Clay Science, 2009, 46, 109-113.	5.2	56
34	Photocatalytic performance of chromium-doped TiO2 nanoparticles for degradation of Reactive Black 5 under natural sunlight illumination. , 0, 67, 324-331.		8
35	Synthesis and characterization of barium-doped TiO2 nanocrystals for photocatalytic degradation of Acid Red 18 under solar irradiation. , 0, 88, 200-206.		14