Luis Martin-Moreno

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9576240/luis-martin-moreno-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 21,063 238 142 h-index g-index citations papers 6.87 6.3 258 24,119 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
238	Phonon-Enhanced Mid-Infrared CO2 Gas Sensing Using Boron Nitride Nanoresonators. <i>ACS Photonics</i> , 2022 , 9, 34-42	6.3	3
237	Neural network assisted design of plasmonic nanostructures on superconducting transition-edge-sensors for single photon detectors <i>Optics Express</i> , 2022 , 30, 12368-12377	3.3	1
236	Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS Nano, 2021, 15, 6669-6677	16.7	11
235	Ultrastrong plasmonphonon coupling via epsilon-near-zero nanocavities. <i>Nature Photonics</i> , 2021 , 15, 125-130	33.9	32
234	Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. <i>Nano Letters</i> , 2021 , 21, 7109-7115	11.5	3
233	Nonlocal Quantum Effects in Plasmons of Graphene Superlattices. <i>Physical Review Letters</i> , 2020 , 124, 257401	7.4	2
232	Ultrastrong coupling effects in molecular cavity QED. <i>Nanophotonics</i> , 2020 , 9, 277-281	6.3	4
231	Plasmonic Dirac Cone in Twisted Bilayer Graphene. <i>Physical Review Letters</i> , 2020 , 125, 256804	7.4	7
230	Terahertz and infrared nonlocality and field saturation in extreme-scale nanoslits. <i>Optics Express</i> , 2020 , 28, 8701-8715	3.3	2
229	Polaritonic Tamm states induced by cavity photons. <i>Nanophotonics</i> , 2020 , 10, 513-521	6.3	6
228	Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. <i>Nature Communications</i> , 2020 , 11, 4872	17.4	19
227	Chiral Current Circulation and Symmetry in a Trimer of Oscillators. <i>ACS Photonics</i> , 2020 , 7, 3401-3414	6.3	8
226	Interrogating hot electrons in tunnel junctions. <i>Science</i> , 2020 , 369, 375-376	33.3	O
225	Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. <i>Nature Communications</i> , 2019 , 10, 3242	17.4	33
224	Single Photons by Quenching the Vacuum. <i>Physical Review Letters</i> , 2019 , 123, 013601	7.4	12
223	Strain-induced large Faraday rotation in graphene at subtesla external magnetic fields. <i>Physical Review Research</i> , 2019 , 1,	3.9	2
222	Topological Phases of Polaritons in a Cavity Waveguide. <i>Physical Review Letters</i> , 2019 , 123, 217401	7.4	20

(2016-2019)

221	Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. <i>Nature Communications</i> , 2019 , 10, 42	17.4	25
220	High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. <i>Nano Letters</i> , 2018 , 18, 1930-1936	11.5	63
219	Emergent causality and theN-photon scattering matrix in waveguide QED. <i>New Journal of Physics</i> , 2018 , 20, 013017	2.9	4
218	Anisotropic Acoustic Plasmons in Black Phosphorus. <i>ACS Photonics</i> , 2018 , 5, 2208-2216	6.3	32
217	Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. <i>Physical Review B</i> , 2018 , 97,	3.3	20
216	Spoof Surface Plasmon Metamaterials 2018 ,		7
215	Polariton Anomalous Hall Effect in Transition-Metal Dichalcogenides. <i>Physical Review Letters</i> , 2018 , 121, 137402	7.4	8
214	Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. <i>Nature Communications</i> , 2017 , 8, 14626	17.4	68
213	Unrelenting plasmons. <i>Nature Photonics</i> , 2017 , 11, 8-10	33.9	46
212	Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy. <i>ACS Photonics</i> , 2017 , 4, 3089-3097	6.3	31
211	Dynamical signatures of bound states in waveguide QED. <i>Physical Review A</i> , 2017 , 96,	2.6	35
21 0	Graphene Plasmon Reflection by Corrugations. ACS Photonics, 2017, 4, 3081-3088	6.3	21
209	Basics of Nanoplasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, 1-19	0.1	
208	Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials. <i>Physical Review B</i> , 2017 , 95,	3.3	25
207	Micropillar Templates for Dielectric Filled Metal Arrays and Flexible Metamaterials. <i>Advanced Optical Materials</i> , 2017 , 5, 1600670	8.1	8
206	Polaritons in layered two-dimensional materials. <i>Nature Materials</i> , 2017 , 16, 182-194	27	665
205	Angle resolved transmission through metal hole gratings. <i>Optics Express</i> , 2017 , 25, 9061-9070	3.3	1
204	Faraday effect in rippled graphene: Magneto-optics and random gauge fields. <i>Physical Review B</i> , 2016 , 94,	3.3	7

203	Full two-photon down-conversion of a single photon. <i>Physical Review A</i> , 2016 , 94,	2.6	15
202	Extraordinary Optical Transmission: Fundamentals and Applications. <i>Proceedings of the IEEE</i> , 2016 , 104, 2288-2306	14.3	43
201	Absorption-induced transparency metamaterials in the terahertz regime. <i>Optics Letters</i> , 2016 , 41, 293-6	53	12
200	High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography. <i>Nano Letters</i> , 2016 , 16, 2040-6	11.5	67
199	One- and two-photon scattering from generalized V-type atoms. <i>Physical Review A</i> , 2016 , 94,	2.6	8
198	Waveguide and Plasmonic Absorption-Induced Transparency. ACS Nano, 2016, 10, 4570-8	16.7	13
197	Mechanisms for photon sorting based on slitgroove arrays. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2015 , 13, 58-65	2.6	1
196	Second-harmonic generation from metallic arrays of rectangular holes. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 15	1.7	15
195	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. <i>Physical Review Letters</i> , 2015 , 115, 173601	7.4	39
194	Stacking Structures of Few-Layer Graphene Revealed by Phase-Sensitive Infrared Nanoscopy. <i>ACS Nano</i> , 2015 , 9, 6765-73	16.7	23
193	Nonlinear quantum optics in the (ultra)strong light-matter coupling. Faraday Discussions, 2015, 178, 33.	5- 56	21
192	Reversible dynamics of single quantum emitters near metal-dielectric interfaces. <i>Physical Review B</i> , 2014 , 89,	3.3	54
191	Broadband and broadangle extraordinary acoustic transmission through subwavelength apertures surrounded by fluids. <i>New Journal of Physics</i> , 2014 , 16, 083044	2.9	7
190	Transmittance of a subwavelength aperture flanked by a finite groove array placed near the focus of a conventional lens. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 1653	1.7	3
189	Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8, 8350-6	16.7	26
188	Anomalous reflection phase of graphene plasmons and its influence on resonators. <i>Physical Review B</i> , 2014 , 90,	3.3	82
187	Magnetic Localized Surface Plasmons. <i>Physical Review X</i> , 2014 , 4,	9.1	51
186	Scattering in the ultrastrong regime: nonlinear optics with one photon. <i>Physical Review Letters</i> , 2014 , 113, 263604	7.4	79

Magnetic localized surface plasmons 2014, 185 11 Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ACS Nano, 2013, 184 16.7 92 7,9780-7 Theory of absorption-induced transparency. Physical Review B, 2013, 88, 183 18 3.3 Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Letters, 182 85 11.5 **2013**, 13, 6210-5 Graphene supports the propagation of subwavelength optical solitons. Laser and Photonics Reviews 181 8.3 102 . 2013. 7. L7-L11 Theory of strong coupling between quantum emitters and propagating surface plasmons. Physical 180 123 7.4 Review Letters, 2013, 110, 126801 Weak and strong coupling regimes in plasmonic QED. Physical Review B, 2013, 87, 179 110 3.3 Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano, 2013, 7, 4988-94 178 16.7 66 Coherent and broadband enhanced optical absorption in graphene. ACS Nano, 2013, 7, 4810-7 16.7 163 177 Analytical Expressions for the Electromagnetic Dyadic Green Function in Graphene and Thin 176 3.8 32 Layers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4600611-4600611 Special issue on graphene nanophotonics. Journal of Optics (United Kingdom), 2013, 15, 110201 175 1.7 3 Analytical solution for the diffraction of an electromagnetic wave by a graphene grating. Journal of 1.7 174 47 Optics (United Kingdom), **2013**, 15, 114008 Gain-assisted extraordinary optical transmission through periodic arrays of subwavelength 173 2.9 21 apertures. New Journal of Physics, 2012, 14, 013020 Resonant plasmonic effects in periodic graphene antidot arrays. Applied Physics Letters, 2012, 101, 1511 1992. 172 120 Transformation plasmonics. Nanophotonics, 2012, 1, 51-64 6.3 171 29 Exploring qubit-qubit entanglement mediated by one-dimensional plasmonic nanowaveguides. 6 170 Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1303-1308 Superradiance mediated by graphene surface plasmons. Physical Review B, 2012, 85, 169 63 3.3 Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene 168 338 3.3 ribbons. Physical Review B, 2012, 85,

167	Localized spoof plasmons arise while texturing closed surfaces. <i>Physical Review Letters</i> , 2012 , 108, 223	9 9 5 ₄	201
166	Diffraction regimes of single holes. <i>Physical Review Letters</i> , 2012 , 109, 023901	7.4	31
165	Optimal light harvesting structures at optical and infrared frequencies. <i>Optics Express</i> , 2012 , 20, 25441	-5333	7
164	Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. <i>Physical Review B</i> , 2012 , 86,	3.3	21
163	Interference of surface plasmon polaritons excited at hole pairs in thin gold films. <i>Applied Physics Letters</i> , 2012 , 101, 201102	3.4	14
162	Effect of film thickness and dielectric environment on optical transmission through subwavelength holes. <i>Physical Review B</i> , 2012 , 85,	3.3	31
161	Comparative study of surface plasmon scattering by shallow ridges and grooves. <i>Physical Review B</i> , 2011 , 83,	3.3	17
160	Dyakonov surface wave resonant transmission. <i>Optics Express</i> , 2011 , 19, 6339-47	3.3	10
159	Mechanisms for extraordinary optical transmission through bull's eye structures. <i>Optics Express</i> , 2011 , 19, 10429-42	3.3	59
158	Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. <i>Optics Letters</i> , 2011 , 36, 4635-7	3	52
157	Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas. <i>ACS Nano</i> , 2011 , 5, 8340-5	16.7	50
156	A holey-structured metamaterial for acoustic deep-subwavelength imaging. <i>Nature Physics</i> , 2011 , 7, 52	-556.2	428
155	Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. <i>Physical Review B</i> , 2011 , 84,	3.3	113
154	Fields radiated by a nanoemitter in a graphene sheet. <i>Physical Review B</i> , 2011 , 84,	3.3	163
153	Edge and waveguide terahertz surface plasmon modes in graphene microribbons. <i>Physical Review B</i> , 2011 , 84,	3.3	398
152	Role of surface plasmon polaritons in the optical response of a hole pair. <i>Physical Review B</i> , 2011 , 84,	3.3	6
151	Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. <i>Physical Review Letters</i> , 2011 , 106, 020501	7.4	361
150	Moulding the flow of surface plasmons using conformal and quasiconformal mappings. <i>New Journal of Physics</i> , 2011 , 13, 033011	2.9	20

149	Oblique launching of optical surface waves by a subwavelength slit. <i>Physical Review B</i> , 2011 , 83,	3.3	3
148	Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation. <i>Physical Review B</i> , 2011 , 83,	3.3	13
147	Anomalous band formation in arrays of terahertz nanoresonators. <i>Physical Review Letters</i> , 2011 , 106, 013902	7.4	25
146	Effect of defect depth on surface plasmon scattering by subwavelength surface defects. <i>Physical Review B</i> , 2011 , 83,	3.3	12
145	Enhanced acoustical transmission and beaming effect through a single aperture. <i>Physical Review B</i> , 2010 , 81,	3.3	59
144	All-angle blockage of sound by an acoustic double-fishnet metamaterial. <i>Applied Physics Letters</i> , 2010 , 97, 134106	3.4	32
143	Optical transmission of periodic annular apertures in metal film on high-refractive index substrate: The role of the nanopillar shape. <i>Applied Physics Letters</i> , 2010 , 96, 201101	3.4	13
142	Collimation of horizontally polarized shear waves by means of ridge grating supported Love modes. <i>Applied Physics Letters</i> , 2010 , 96, 233505	3.4	3
141	Dual band terahertz waveguiding on a planar metal surface patterned with annular holes. <i>Applied Physics Letters</i> , 2010 , 96, 011101	3.4	35
140	Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. <i>Nano Letters</i> , 2010 , 10, 3129-34	11.5	165
139	Observation of enhanced transmission for s-polarized light through a subwavelength slit. <i>Optics Express</i> , 2010 , 18, 9722-7	3.3	27
		<i>J</i> • <i>J</i>	-
138	Optimization of bull's eye structures for transmission enhancement. <i>Optics Express</i> , 2010 , 18, 11292-9	3.3	73
138	Optimization of bull's eye structures for transmission enhancement. <i>Optics Express</i> , 2010 , 18, 11292-9 Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. <i>Optics Express</i> , 2010 , 18, 23691-7		73
	Holes with very acute angles: a new paradigm of extraordinary optical transmission through	3.3	
137	Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. <i>Optics Express</i> , 2010 , 18, 23691-7 Geometrically induced modification of surface plasmons in the optical and telecom regimes. <i>Optics</i>	3.3	33
137	Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. <i>Optics Express</i> , 2010 , 18, 23691-7 Geometrically induced modification of surface plasmons in the optical and telecom regimes. <i>Optics Letters</i> , 2010 , 35, 423-5	3.3	33
137 136 135	Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. <i>Optics Express</i> , 2010 , 18, 23691-7 Geometrically induced modification of surface plasmons in the optical and telecom regimes. <i>Optics Letters</i> , 2010 , 35, 423-5 Optical switching in metal-slit arrays on nonlinear dielectric substrates. <i>Optics Letters</i> , 2010 , 35, 4211-3	3.3 3.3 3	33 16

131	Transformation optics for plasmonics. <i>Nano Letters</i> , 2010 , 10, 1985-90	11.5	169
130	Influence of the dielectric substrate on the field emitted by a subwavelength slit in a metal film. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 250-252	2.5	6
129	Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector. <i>Applied Physics Letters</i> , 2009 , 95, 011113	3.4	18
128	Holey metal films make perfect endoscopes. <i>Physical Review B</i> , 2009 , 79,	3.3	23
127	Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications. <i>Applied Physics Letters</i> , 2009 , 95, 021101	3.4	19
126	In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New Journal of Physics, 2009 , 11, 123020	2.9	59
125	Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons. <i>New Journal of Physics</i> , 2009 , 11, 113043	2.9	13
124	Extraordinary optical transmission through hole arrays in optically thin metal films. <i>Optics Letters</i> , 2009 , 34, 4-6	3	50
123	Terahertz wedge plasmon polaritons. <i>Optics Letters</i> , 2009 , 34, 2063-5	3	92
122	Polarization conversion spectroscopy of hybrid modes. <i>Optics Letters</i> , 2009 , 34, 3911-3	3	6
121	Extraordinary transmission through metal-coated monolayers of microspheres. <i>Optics Express</i> , 2009 , 17, 761-72	3.3	64
120	Efficient unidirectional ridge excitation of surface plasmons. <i>Optics Express</i> , 2009 , 17, 7228-32	3.3	85
119	Bragg reflection of terahertz waves in plasmonic crystals. <i>Optics Express</i> , 2009 , 17, 9212-8	3.3	14
118	Light transmission properties of holey metal films in the metamaterial limit: effective medium theory and subwavelength imaging. <i>New Journal of Physics</i> , 2009 , 11, 123013	2.9	6
117	Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes. <i>Journal of Optics</i> , 2009 , 11, 125702		20
116	Nanofocusing with channel plasmon polaritons. <i>Nano Letters</i> , 2009 , 9, 1278-82	11.5	121
115	Holey metal films: From extraordinary transmission to negative-index behavior. <i>Physical Review B</i> , 2009 , 80,	3.3	23
114	Intercoupling of free-space radiation to s-polarized confined modes via nanocavities. <i>Applied Physics Letters</i> , 2009 , 94, 063119	3.4	10

(2008-2009)

113	Guiding terahertz waves along subwavelength channels. <i>Physical Review B</i> , 2009 , 79,	3.3	86
112	Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008, 2, 175-179	33.9	447
111	Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 1515-1521	3.8	67
110	Efficiency of local surface plasmon polariton excitation on ridges. <i>Physical Review B</i> , 2008 , 78,	3.3	7 ²
109	Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. <i>Optics Express</i> , 2008 , 16, 3420-9	3.3	64
108	Efficiency and finite size effects in enhanced transmission through subwavelength apertures. <i>Optics Express</i> , 2008 , 16, 9571-9	3.3	73
107	Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture. <i>Physical Review Letters</i> , 2008 , 100, 123901	7.4	105
106	Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness. <i>Physical Review B</i> , 2008 , 78,	3.3	34
105	Theory of negative-refractive-index response of double-fishnet structures. <i>Physical Review Letters</i> , 2008 , 101, 103902	7.4	145
104	Transmission Resonances Through a Fibonacci Array of Subwavelength Slits. <i>Electromagnetics</i> , 2008 , 28, 186-197	0.8	3
104		0.8	2
	, 28, 186-197	1.8	
103	, 28, 186-197 Efficiency of local surface plasmon polariton excitation on ridges 2008 , Minimal model for optical transmission through holey metal films. <i>Journal of Physics Condensed</i>		2
103	Efficiency of local surface plasmon polariton excitation on ridges 2008 , Minimal model for optical transmission through holey metal films. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 304214 Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. <i>New Journal of</i>	1.8	2
103	Efficiency of local surface plasmon polariton excitation on ridges 2008, Minimal model for optical transmission through holey metal films. <i>Journal of Physics Condensed Matter</i> , 2008, 20, 304214 Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. <i>New Journal of Physics</i> , 2008, 10, 033035 Plasmonic metamaterials based on holey metallic films. <i>Journal of Physics Condensed Matter</i> , 2008,	1.8	2 19 29
103 102 101	Efficiency of local surface plasmon polariton excitation on ridges 2008, Minimal model for optical transmission through holey metal films. Journal of Physics Condensed Matter, 2008, 20, 304214 Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. New Journal of Physics, 2008, 10, 033035 Plasmonic metamaterials based on holey metallic films. Journal of Physics Condensed Matter, 2008, 20, 304215 Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a	1.8 2.9 1.8	2 19 29
103 102 101 100	Efficiency of local surface plasmon polariton excitation on ridges 2008, Minimal model for optical transmission through holey metal films. Journal of Physics Condensed Matter, 2008, 20, 304214 Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. New Journal of Physics, 2008, 10, 033035 Plasmonic metamaterials based on holey metallic films. Journal of Physics Condensed Matter, 2008, 20, 304215 Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film. New Journal of Physics, 2008, 10, 105017 Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Physical Review	1.8 2.9 1.8 2.9	2 19 29 14 50

95	Confining and slowing airborne sound with a corrugated metawire. <i>Applied Physics Letters</i> , 2008 , 93, 083502	3.4	32
94	Terahertz surface plasmon polaritons on a helically grooved wire. <i>Applied Physics Letters</i> , 2008 , 93, 141	1694	41
93	Influence of material properties on extraordinary optical transmission through hole arrays. <i>Physical Review B</i> , 2008 , 77,	3.3	139
92	Theory of resonant acoustic transmission through subwavelength apertures. <i>Physical Review Letters</i> , 2008 , 101, 014301	7.4	183
91	Efficient unidirectional nanoslit couplers for surface plasmons. <i>Nature Physics</i> , 2007 , 3, 324-328	16.2	393
90	Collimation of sound assisted by acoustic surface waves. <i>Nature Physics</i> , 2007 , 3, 851-852	16.2	220
89	Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 89, 251-258	2.6	12
88	Surface plasmon polariton scattering by finite-size nanoparticles. <i>Physical Review B</i> , 2007 , 76,	3.3	43
87	Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes. <i>Physical Review Letters</i> , 2007 , 99, 203905	7.4	43
86	Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. <i>Physical Review B</i> , 2007 , 75,	3.3	41
85	Resonant transmission of light through finite arrays of slits. <i>Physical Review B</i> , 2007 , 76,	3.3	30
84	Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects. <i>Physical Review B</i> , 2007 , 75,	3.3	11
83	Theory of light transmission through an array of rectangular holes. <i>Physical Review B</i> , 2007 , 76,	3.3	74
82	Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes. <i>Physical Review B</i> , 2007 , 76,	3.3	31
81	Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. <i>Journal of Optics</i> , 2007 , 9, S366-S371		13
80	Scattering of surface plasmon polaritons by one-dimensional inhomogeneities. <i>Physical Review B</i> , 2007 , 75,	3.3	48
79	Heat production and energy balance in nanoscale engines driven by time-dependent fields. <i>Physical Review B</i> , 2007 , 75,	3.3	70
78	THEORY OF LIGHT TRANSMISSION THROUGH PERIODICALLY STRUCTURED NANO-APERTURES 2007 , 27-38		

(2004-2006)

77	Transmission of light through a single rectangular hole in a real metal. <i>Physical Review B</i> , 2006 , 74,	3.3	108
76	Beaming matter waves from a subwavelength aperture. <i>Physical Review A</i> , 2006 , 74,	2.6	10
75	Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory. <i>Physical Review B</i> , 2006 , 73,	3.3	60
74	Resonant Transmission of Light Through Subwavelength Holes in Thick Metal Films. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 1221-1227	3.8	13
73	Extraordinary optical transmission without plasmons: the s-polarization case. <i>Journal of Optics</i> , 2006 , 8, S94-S97		83
72	Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. <i>Physical Review Letters</i> , 2006 , 97, 176805	7.4	546
71	Channel plasmon-polaritons: modal shape, dispersion, and losses. <i>Optics Letters</i> , 2006 , 31, 3447-9	3	146
70	Theory of optical transmission through arrays of subwavelength apertures. <i>Handai Nanophotonics</i> , 2006 , 15-29		
69	How light emerges from an illuminated array of subwavelength holes. <i>Nature Physics</i> , 2006 , 2, 120-123	16.2	77
68	Foundations of the composite diffracted evanescent wave model. <i>Nature Physics</i> , 2006 , 2, 790-790	16.2	18
67	Transmission of light through a single rectangular hole. <i>Physical Review Letters</i> , 2005 , 95, 103901	7.4	303
66	Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates. <i>IEEE Transactions on Antennas and Propagation</i> , 2005 , 53, 1897-1903	4.9	64
65	Surfaces with holes in them: new plasmonic metamaterials. <i>Journal of Optics</i> , 2005 , 7, S97-S101		730
64	Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces. <i>Physical Review B</i> , 2005 , 72,	3.3	74
63	Resonant transmission of cold atoms through subwavelength apertures. <i>Physical Review Letters</i> , 2005 , 95, 170406	<i>7</i> ⋅4	26
62	Optical Transmission through Periodically Nano-structured Metal Films. <i>Advances in Solid State Physics</i> , 2004 , 69-80		3
61	Resonant transmission of light through finite chains of subwavelength holes in a metallic film. <i>Physical Review Letters</i> , 2004 , 93, 227401	7.4	100
60	Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit. <i>Physical Review E</i> , 2004 , 69, 026601	2.4	102

59	Theory of plasmon-assisted transmission of entangled photons. <i>Physical Review Letters</i> , 2004 , 92, 23680 7 .4		45
58	Mimicking surface plasmons with structured surfaces. <i>Science</i> , 2004 , 305, 847-8	33.3	2073
57	Efficient coupling of light into and out of a photonic crystal waveguide via surface modes. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2004 , 2, 97-102	2.6	23
56	Optical bistability in subwavelength slit apertures containing nonlinear media. <i>Physical Review B</i> , 2004 , 70,	3.3	66
55	Enhanced transmission and beaming of light via photonic crystal surface modes. <i>Physical Review B</i> , 2004 , 69,	3.3	169
54	Transmission in cut-off hole arrays 2004 ,		1
53	Optical transmission through circular hole arrays in optically thick metal films. <i>Optics Express</i> , 2004 , 12, 3619-28	3.3	81
52	Enhanced millimeter-wave transmission through subwavelength hole arrays. <i>Optics Letters</i> , 2004 , 29, 2500-2	3	126
51	Focusing light with a single subwavelength aperture flanked by surface corrugations. <i>Applied Physics Letters</i> , 2003 , 83, 4500-4502	3.4	179
50	Multiple paths to enhance optical transmission through a single subwavelength slit. <i>Physical Review Letters</i> , 2003 , 90, 213901	7.4	387
49	Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. <i>Physical Review Letters</i> , 2003 , 90, 167401	7.4	446
48	Chessboard Magnetoconductance of a Quantum Dot in the Kondo Regime 2003 , 153-165		
47	Beaming light from a subwavelength aperture. <i>Science</i> , 2002 , 297, 820-2	33.3	1394
46	Transmission and focusing of light in one-dimensional periodically nanostructured metals. <i>Physical Review B</i> , 2002 , 66,	3.3	289
45	Quantum dots in high magnetic fields: spin textures and Kondo effect. <i>Solid State Communications</i> , 2001 , 117, 133-140	1.6	1
44	Evanescently coupled resonance in surface plasmon enhanced transmission. <i>Optics Communications</i> , 2001 , 200, 1-7	2	357
43	Kondo effect in multielectron quantum dots at high magnetic fields. <i>Physical Review B</i> , 2001 , 63,	3.3	8
42	Theory of extraordinary optical transmission through subwavelength hole arrays. <i>Physical Review Letters</i> , 2001 , 86, 1114-7	7.4	1299

Canted ground state in artificial molecules at high magnetic fields. Physical Review B, 2000, 62, R10633-R1063621 41 Spin-Isospin Textured Excitations in a Double Layer at Filling Factor

☐ 2. Physical Review Letters, 40 7.4 10 1999, 83, 2250-2253 Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials. Physical 39 61 7.4 Review Letters, 1999, 83, 73-75 Thermopower measurements of semiconductor quantum dots. Physica B: Condensed Matter, 1998, 38 2.8 249-251, 281-285 Scattering theory for spin waves in quantum Hall ferromagnets. Physical Review B, 1998, 57, 6618-6622 3.3 8 37 Spin Textures in Quantum Dots 1998, 127-136 36 Thermoelectric signature of the excitation spectrum of a quantum dot. Physical Review B, 1997, 55, R10197-R10200 35 Spin textures in quantum Hall droplets. Physica E: Low-Dimensional Systems and Nanostructures, 34 **1997**, 1, 47-53 Charge excitations of quantum dots in magnetic fields. Solid-State Electronics, 1996, 40, 21-24 1.7 33 1 Skyrmions and edge-spin excitations in quantum Hall droplets. Physical Review B, 1996, 54, 16850-168593.3 32 49 Correlation effects in quantum dots in magnetic fields. Physica B: Condensed Matter, 1995, 212, 224-230 2.8 31 4 Electron energy loss in dense arrays of metallic particles. Nuclear Instruments & Methods in Physics 1.2 30 Research B, 1995, 96, 565-568 Low-lying excitations of quantum hall droplets. Physical Review Letters, 1995, 74, 5120-5123 29 7.4 43 The effect of completeness of medical records on the determination of appropriateness of hospital 28 1.9 9 days. International Journal for Quality in Health Care, 1995, 7, 267-75 Energy loss by charged particles in complex media. Physical Review B, 1994, 50, 5062-5073 58 27 3.3 Vertical tunneling between two quantum dots in a transverse magnetic field. Physical Review B, 26 18 3.3 **1994**, 49, 8071-8075 Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates. 25 3.3 139 Physical Review B, 1994, 50, 5760-5763 The interplay between magnetic field and electron-electron interaction on transport through 2.8 24 5 quantum dots. Superlattices and Microstructures, 1994, 15, 91

23	Single-electron tunneling and Coulomb charging effects in ultrasmall double-barrier heterostructures. <i>Solid-State Electronics</i> , 1994 , 37, 793-799	1.7	14
22	Ground state properties of interacting electrons in semiconductor quantum dots: Exact and unrestricted hartree-fock results. <i>Solid-State Electronics</i> , 1994 , 37, 1179-1182	1.7	3
21	Correlation effects on transport through few-electrons systems. Surface Science, 1994, 305, 541-546	1.8	4
20	Many-body effects in quantum dots under magnetic fields. <i>Physica Scripta</i> , 1994 , T55, 20-24	2.6	2
19	Thermopower of a one-dimensional ballistic constriction in the non-linear regime. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 8055-8064	1.8	21
18	Magnetotunnelling through Quantum Boxes in a Strong-Correlation Regime. <i>Europhysics Letters</i> , 1993 , 23, 495-501	1.6	29
17	Enhancement of intersubband transition probability in a one-dimensional constriction. <i>Physical Review B</i> , 1993 , 47, 4088-4091	3.3	7
16	Coulomb blockade in resonant magnetotunneling through rectangular quantum dots. <i>Physica B: Condensed Matter</i> , 1993 , 189, 27-33	2.8	2
15	Non-linear conductance of a saddle-point constriction. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 13	2 3 .83:	33 65
14	Resonant tunneling in an AlxGa1-xAs/GaAs quantum dot as a function of magnetic field. <i>Physical Review B</i> , 1992 , 46, 3948-3952	3.3	45
13	Single-electron tunneling and Coulomb charging effects in aysmmetric double-barrier resonant-tunneling diodes. <i>Physical Review B</i> , 1992 , 45, 14407-14410	3.3	62
12	Quantisation of the conductance in units of e2/2h in a ballistic quasi-one-dimensional channel, produced by strong electric and magnetic fields. <i>Superlattices and Microstructures</i> , 1992 , 11, 233-235	2.8	6
11	Multi-terminal phase-coherent magnetoconductance. Superlattices and Microstructures, 1992, 11, 303-3	80 ₹.8	
10	Causal-surface Green's function method. <i>Surface Science</i> , 1991 , 244, 160-176	1.8	25
9	Electronic structure of amorphous silicon carbide compounds. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1990 , 61, 237-7	250	7
8	Ballistic transport in one dimension: additional quantisation produced by an electric field. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 7247-7254	1.8	52
7	Possibility of finding reliable solid-state tight-binding parameters for the Si-N bond through quantum-chemistry calculations. <i>Physical Review B</i> , 1989 , 39, 1844-1855	3.3	16
6	Effect of under- and overcoordination on the electronic structure of amorphous silicon. <i>Physical Review B</i> , 1989 , 39, 3445-3448	3.3	8

LIST OF PUBLICATIONS

5	Ballistic transport in a one-dimensional system with an arbitrary longitudinal potential. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 5421-5427	1.8	11
4	Electronic structure, defect states, and optical absorption of amorphous Si1-xNx. <i>Physical Review B</i> , 1987 , 35, 9683-9692	3.3	55
3	Dispersionless states in random Cayley trees with multiple connectivity. <i>Physical Review B</i> , 1987 , 35, 9103-9107	3.3	
2	Electronic density of states on a randomly dilute Cayley tree. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 6751-6760		10
1	Surface electromagnetic waves on structured perfectly conducting surfaces232-268		4