Yangying Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576206/publications.pdf

Version: 2024-02-01

414414 304743 3,922 36 22 32 h-index citations g-index papers 38 38 38 5505 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges and opportunities towards fast-charging battery materials. Nature Energy, 2019, 4, 540-550.	39.5	1,053
2	Nanoengineered materials for liquid–vapour phase-change heat transfer. Nature Reviews Materials, 2017, 2, .	48.7	431
3	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	23.7	370
4	Efficient electrocatalytic CO2 reduction on a three-phase interface. Nature Catalysis, 2018, 1, 592-600.	34.4	336
5	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	9.1	193
6	Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nature Communications, 2019, 10, 2067.	12.8	177
7	Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction. Joule, 2019, 3, 557-569.	24.0	132
8	Surface Structure Enhanced Microchannel Flow Boiling. Journal of Heat Transfer, 2016, 138, .	2.1	129
9	Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. Langmuir, 2012, 28, 15777-15788.	3.5	127
10	Realâ€Time Manipulation with Magnetically Tunable Structures. Advanced Materials, 2014, 26, 6442-6446.	21.0	120
11	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	27.8	111
12	Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29453-29461.	7.1	94
13	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 2021, 12, 6122.	12.8	86
14	An Interconnected Channel‣ike Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	19.5	83
15	COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets. Nano Letters, 2020, 20, 7744-7750.	9.1	76
16	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	9.1	65
17	Prediction and Characterization of Dry-out Heat Flux in Micropillar Wick Structures. Langmuir, 2016, 32, 1920-1927.	3. 5	62
18	Correlating Li-Ion Solvation Structures and Electrode Potential Temperature Coefficients. Journal of the American Chemical Society, 2021, 143, 2264-2271.	13.7	44

#	Article	IF	CITATIONS
19	Dynamic Evolution of the Evaporating Liquid–Vapor Interface in Micropillar Arrays. Langmuir, 2016, 32, 519-526.	3.5	29
20	Suppressing high-frequency temperature oscillations in microchannels with surface structures. Applied Physics Letters, 2017, 110 , .	3.3	28
21	A Particle Resuspension Model in Ventilation Ducts. Aerosol Science and Technology, 2012, 46, 222-235.	3.1	24
22	Coexistence of Pinning and Moving on a Contact Line. Langmuir, 2017, 33, 8970-8975.	3.5	24
23	Electrotunable liquid sulfurÂmicrodroplets. Nature Communications, 2020, 11, 606.	12.8	22
24	Thermal design optimization of evaporator micropillar wicks. International Journal of Thermal Sciences, 2018, 134, 179-187.	4.9	19
25	Electrowetting-on-dielectric actuation of a vertical translation and angular manipulation stage. Applied Physics Letters, 2016, 109, .	3.3	18
26	Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. Nano Letters, 2020, 20, 8719-8724.	9.1	15
27	Heat transfer suppression by suspended droplets on microstructured surfaces. Applied Physics Letters, 2020, 116, .	3.3	15
28	Characterization of thin film evaporation in micropillar wicks using micro-Raman spectroscopy. Applied Physics Letters, 2018, 113, .	3.3	12
29	Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants. ACS Central Science, 2022, 8, 235-245.	11.3	9
30	UVB Radiation Alone May Not Explain Sunlight Inactivation of SARS-CoV-2. Journal of Infectious Diseases, 2021, 223, 1500-1502.	4.0	6
31	Suppressed Dry-out in Two-Phase Microchannels via Surface Structures. Journal of Heat Transfer, 2016, 138, .	2.1	3
32	Boiling on Enhanced Surfaces. , 2017, , 1-47.		2
33	Model optimization of dry-out heat flux from micropillar wick structures. , 2016, , .		1
34	Boiling on Enhanced Surfaces. , 2018, , 1747-1793.		1
35	Manipulating Water and Heat with Nanoengineered Surfaces. Women in Engineering and Science, 2020, , 85-99.	0.4	0
36	Battery chemical heterogeneity revealed by thermal conductivity measurement. Trends in Chemistry, 2021, 3, 797-799.	8.5	0