Jeremiah A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576190/publications.pdf

Version: 2024-02-01

		22132	25770
138	12,609	59	108
papers	citations	h-index	g-index
153	153	153	11507
	133	133	11307
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties. Nature Chemistry, 2022, 14, 85-93.	6.6	43
2	Dynamic Polypyrrole Core–Shell Chemomechanical Actuators. Chemistry of Materials, 2022, 34, 3013-3019.	3.2	7
3	Introduction to molecularly defined polymers: synthesis and function. Polymer Chemistry, 2022, 13, 2400-2401.	1.9	3
4	Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nature Communications, 2022, 13, .	5.8	18
5	Orthogonally deconstructable and depolymerizable polysilylethers <i>via</i> entropy-driven ring-opening metathesis polymerization. Chemical Communications, 2022, 58, 8496-8499.	2.2	16
6	Cleavable Comonomers for Chemically Recyclable Polystyrene: A General Approach to Vinyl Polymer Circularity. Journal of the American Chemical Society, 2022, 144, 12979-12988.	6.6	53
7	Endohedrally Functionalized Metal–Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. Journal of the American Chemical Society, 2022, 144, 13276-13284.	6.6	24
8	<i>N</i> Heterocyclic carbene–carbodiimide (NHC–CDI) betaine adducts: synthesis, characterization, properties, and applications. Chemical Science, 2021, 12, 2699-2715.	3.7	8
9	Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). Chemistry of Materials, 2021, 33, 524-534.	3.2	53
10	PolyDAT: A Generic Data Schema for Polymer Characterization. Journal of Chemical Information and Modeling, 2021, 61, 1150-1163.	2.5	16
11	Design of BET Inhibitor Bottlebrush Prodrugs with Superior Efficacy and Devoid of Systemic Toxicities. Journal of the American Chemical Society, 2021, 143, 4714-4724.	6.6	18
12	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	19.8	323
13	Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chemical Reviews, 2021, 121, 7059-7121.	23.0	75
14	Molecular Characterization of Polymer Networks. Chemical Reviews, 2021, 121, 5042-5092.	23.0	140
15	Molecularly Designed Additives for Chemically Deconstructable Thermosets without Compromised Thermomechanical Properties. ACS Macro Letters, 2021, 10, 805-810.	2.3	31
16	Finding the right balance. Nature Energy, 2021, 6, 692-693.	19.8	1
17	Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. Jacs Au, 2021, 1, 1621-1630.	3.6	23
18	Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Advanced Drug Delivery Reviews, 2021, 175, 113803.	6.6	76

#	Article	IF	CITATIONS
19	Continuous dimethyldioxirane generation for polymer epoxidation. Polymer Chemistry, 2021, 12, 489-493.	1.9	5
20	A low-cost tabletop tensile tester with optical extensometer. Materials Advances, 2021, 2, 6339-6343.	2.6	3
21	Stabilizing electrode–electrolyte interfaces to realize high-voltage Li LiCoO ₂ batteries by a sulfonamide-based electrolyte. Energy and Environmental Science, 2021, 14, 6030-6040.	15.6	84
22	Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science, 2021, 374, 193-196.	6.0	124
23	Radical PolyMOFs: A Role for Ligand Dispersity in Enabling Crystallinity. Chemistry of Materials, 2021, 33, 9508-9514.	3.2	8
24	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
25	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
26	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	15.6	198
27	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu ₂₄ L ₂₄ Metal–Organic Cages as Junctions. Angewandte Chemie - International Edition, 2020, 59, 2784-2792.	7.2	58
28	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu 24 L 24 Metal–Organic Cages as Junctions. Angewandte Chemie, 2020, 132, 2806-2814.	1.6	12
29	An Nâ€Heterocyclicâ€Carbeneâ€Derived Distonic Radical Cation. Angewandte Chemie, 2020, 132, 3980-3983.	1.6	4
30	An Nâ€Heterocyclicâ€Carbeneâ€Derived Distonic Radical Cation. Angewandte Chemie - International Edition, 2020, 59, 3952-3955.	7.2	16
31	Effect of Chemical Variations in the Structure of Poly(ethylene oxide)-Based Polymers on Lithium Transport in Concentrated Electrolytes. Chemistry of Materials, 2020, 32, 121-126.	3.2	27
32	Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature, 2020, 583, 542-547.	13.7	253
33	Pro-organic radical contrast agents ("pro-ORCAsâ€) for real-time MRI of pro-drug activation in biological systems. Polymer Chemistry, 2020, 11, 4768-4779.	1.9	20
34	Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. Chemistry of Materials, 2020, 32, 4144-4151.	3.2	63
35	ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. Chemical Science, 2020, 11, 5974-5986.	3.7	40
36	Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes. ACS Central Science, 2020, 6, 1115-1128.	5. 3	15

#	Article	IF	Citations
37	Innentitelbild: Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu ₂₄ L ₂₄ Metal–Organic Cages as Junctions (Angew.) ⁷	Гј ЕТ@ q1 1	0. 0 84314 rg
38	Design of S-Substituted Fluorinated Aryl Sulfonamide-Tagged (S-FAST) Anions To Enable New Solvate Ionic Liquids for Battery Applications. Chemistry of Materials, 2019, 31, 7558-7564.	3.2	11
39	Molecular Design of Stable Sulfamide- and Sulfonamide-Based Electrolytes for Aprotic Li-O2 Batteries. CheM, 2019, 5, 2630-2641.	5 . 8	53
40	Modular Polymer Antigens To Optimize Immunity. Biomacromolecules, 2019, 20, 4370-4379.	2.6	7
41	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. Angewandte Chemie, 2019, 131, 16829-16834.	1.6	5
42	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. Angewandte Chemie - International Edition, 2019, 58, 16676-16681.	7.2	44
43	Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nature Chemistry, 2019, 11, 1124-1132.	6.6	129
44	BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules. ACS Central Science, 2019, 5, 1523-1531.	5. 3	134
45	Extending the Phantom Network Theory to Account for Cooperative Effect of Defects. Macromolecular Symposia, 2019, 385, 1900010.	0.4	6
46	Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles. Chemical Science, 2019, 10, 5332-5337.	3.7	33
47	A (Macro)Molecular-Level Understanding of Polymer Network Topology. Trends in Chemistry, 2019, 1, 318-334.	4.4	127
48	Polyoxazoline-Based Bottlebrush and Brush-Arm Star Polymers via ROMP: Syntheses and Applications as Organic Radical Contrast Agents. ACS Macro Letters, 2019, 8, 473-478.	2.3	55
49	Revisiting the Elasticity Theory for Real Gaussian Phantom Networks. Macromolecules, 2019, 52, 1685-1694.	2.2	57
50	Visible-light-mediated, additive-free, and open-to-air controlled radical polymerization of acrylates and acrylamides. Polymer Chemistry, 2019, 10, 1585-1590.	1.9	42
51	Antibody-targeting of ultra-small nanoparticles enhances imaging sensitivity and enables longitudinal tracking of multiple myeloma. Nanoscale, 2019, 11, 20485-20496.	2.8	27
52	Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nature Chemistry, 2019, 11, 57-63.	6.6	109
53	Brushâ€First ROMP of poly(ethylene oxide) macromonomers of varied length: impact of polymer architecture on thermal behavior and Li ⁺ conductivity. Journal of Polymer Science Part A, 2019, 57, 448-455.	2,5	22
54	Main-Chain Zwitterionic Supramolecular Polymers Derived from ⟨i⟩N⟨/i⟩-Heterocyclic Carbeneâ€"Carbodiimide (NHCâ€"CDI) Adducts. Macromolecules, 2018, 51, 3006-3016.	2.2	19

#	Article	IF	Citations
55	Topological Structure of Networks Formed from Symmetric Four-Arm Precursors. Macromolecules, 2018, 51, 1224-1231.	2.2	72
56	Counting Secondary Loops Is Required for Accurate Prediction of End-Linked Polymer Network Elasticity. ACS Macro Letters, 2018, 7, 244-249.	2.3	60
57	Stereochemical Sequence Dictates Unimolecular Diblock Copolymer Assembly. Journal of the American Chemical Society, 2018, 140, 1596-1599.	6.6	61
58	Sub-10 nm Self-Assembly of Mesogen-Containing Grafted Macromonomers and Their Bottlebrush Polymers. Macromolecules, 2018, 51, 3680-3690.	2.2	29
59	Scalable Synthesis of Multivalent Macromonomers for ROMP. ACS Macro Letters, 2018, 7, 472-476.	2.3	42
60	Fluorinated Aryl Sulfonimide Tagged (FAST) salts: modular synthesis and structure–property relationships for battery applications. Energy and Environmental Science, 2018, 11, 1326-1334.	15.6	26
61	Brush-First and ROMP-Out with Functional (Macro)monomers: Method Development, Structural Investigations, and Applications of an Expanded Brush-Arm Star Polymer Platform. Macromolecules, 2018, 51, 9861-9870.	2.2	20
62	Triply Loaded Nitroxide Brush-Arm Star Polymers Enable Metal-Free Millimetric Tumor Detection by Magnetic Resonance Imaging. ACS Nano, 2018, 12, 11343-11354.	7.3	56
63	Leaving Groups as Traceless Topological Modifiers for the Synthesis of Topologically Isomeric Polymer Networks. Journal of the American Chemical Society, 2018, 140, 14033-14037.	6.6	27
64	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angewandte Chemie - International Edition, 2018, 57, 8493-8497.	7.2	79
65	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angewandte Chemie, 2018, 130, 8629-8633.	1.6	13
66	Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. Journal of the American Chemical Society, 2018, 140, 10932-10936.	6.6	70
67	Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature, 2018, 560, 65-69.	13.7	266
68	Reduction of liver fibrosis by rationally designed macromolecular telmisartan prodrugs. Nature Biomedical Engineering, 2018, 2, 822-830.	11.6	26
69	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	2.6	10
70	Reduction of (Meth)acrylate-Based Block Copolymers Provides Access to Self-Assembled Materials with Ultrasmall Domains. Macromolecules, 2018, 51, 6757-6763.	2.2	34
71	Hot lithium-oxygen batteries charge ahead. Science, 2018, 361, 758-758.	6.0	20
72	Templated Self-Assembly of a PS- <i>Branch</i> -PDMS Bottlebrush Copolymer. Nano Letters, 2018, 18, 4360-4369.	4.5	54

#	Article	IF	Citations
73	A Rationally Designed Novel Polymer for Safe and Synergistic Delivery of High Dose Bortezomib, Pomalidomide/Lenalidomide, and Dexamethasone for Multiple Myeloma. Blood, 2018, 132, 4681-4681.	0.6	O
74	Logic-Controlled Radical Polymerization with Heat and Light: Multiple-Stimuli Switching of Polymer Chain Growth via a Recyclable, Thermally Responsive Gel Photoredox Catalyst. Journal of the American Chemical Society, 2017, 139, 2257-2266.	6.6	114
75	Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis. ACS Central Science, 2017, 3, 124-134.	5.3	146
76	Photo-regeneration of severed gel with iniferter-mediated photo-growth. Soft Matter, 2017, 13, 1978-1987.	1.2	20
77	Odd–Even Effect of Junction Functionality on the Topology and Elasticity of Polymer Networks. Macromolecules, 2017, 50, 2556-2564.	2.2	51
78	Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4875-4880.	3.3	67
79	Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Threeâ€Component Assembly. Angewandte Chemie - International Edition, 2017, 56, 188-192.	7.2	62
80	Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three omponent Assembly. Angewandte Chemie, 2017, 129, 194-198.	1.6	17
81	Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. Journal of Materials Chemistry A, 2017, 5, 23987-23998.	5.2	33
82	Mikto-Brush-Arm Star Polymers via Cross-Linking of Dissimilar Bottlebrushes: Synthesis and Solution Morphologies. ACS Macro Letters, 2017, 6, 963-968.	2.3	41
83	Kinetic Monte Carlo Simulation for Quantification of the Gel Point of Polymer Networks. ACS Macro Letters, 2017, 6, 1414-1419.	2.3	64
84	Block co-polyMOFs: assembly of polymer–polyMOF hybrids via iterative exponential growth and "click―chemistry. Polymer Chemistry, 2017, 8, 4488-4493.	1.9	44
85	Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS Central Science, 2017, 3, 800-811.	5.3	126
86	Reactions of Persistent Carbenes with Hydrogen-Terminated Silicon Surfaces. Journal of the American Chemical Society, 2016, 138, 8639-8652.	6.6	61
87	Tailoring the structure of polymer networks with iniferter-mediated photo-growth. Polymer Chemistry, 2016, 7, 2955-2964.	1.9	40
88	Polymer Structure Dependent Hierarchy in PolyMOC Gels. Macromolecules, 2016, 49, 6896-6902.	2.2	48
89	Block Co-PolyMOCs by Stepwise Self-Assembly. Journal of the American Chemical Society, 2016, 138, 10708-10715.	6.6	65
90	Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A- <i>Branch</i> -B Diblock Macromonomers. Journal of the American Chemical Society, 2016, 138, 11501-11504.	6.6	146

#	Article	IF	Citations
91	Using an RNAi Signature Assay To Guide the Design of Three-Drug-Conjugated Nanoparticles with Validated Mechanisms, In Vivo Efficacy, and Low Toxicity. Journal of the American Chemical Society, 2016, 138, 12494-12501.	6.6	44
92	Quantifying the impact of molecular defects on polymer network elasticity. Science, 2016, 353, 1264-1268.	6.0	360
93	Universal Cyclic Topology in Polymer Networks. Physical Review Letters, 2016, 116, 188302.	2.9	89
94	Iterative Exponential Growth Synthesis and Assembly of Uniform Diblock Copolymers. Journal of the American Chemical Society, 2016, 138, 9369-9372.	6.6	107
95	Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nature Chemistry, 2016, 8, 33-41.	6.6	234
96	Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chemical Reviews, 2016, 116, 10167-10211.	23.0	883
97	Cycloelimination of Imidazolidin-2-ylidene N-Heterocyclic Carbenes: Mechanism and Insights into the Synthesis of Stable "NHC-CDI―Amidinates. Chemistry - A European Journal, 2015, 21, 5649-5649.	1.7	0
98	Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chemical Communications, 2015, 51, 6742-6745.	2.2	117
99	Loops versus Branch Functionality in Model Click Hydrogels. Macromolecules, 2015, 48, 8980-8988.	2.2	86
100	Cycloelimination of Imidazolidinâ€2â€ylidene Nâ€Heterocyclic Carbenes: Mechanism and Insights into the Synthesis of Stable "NHCâ€CDl―Amidinates. Chemistry - A European Journal, 2015, 21, 5685-5688.	1.7	21
101	PEGylated $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene Anchors Designed To Stabilize Gold Nanoparticles in Biologically Relevant Media. Journal of the American Chemical Society, 2015, 137, 7974-7977.	6.6	152
102	Visible-Light-Controlled Living Radical Polymerization from a Trithiocarbonate Iniferter Mediated by an Organic Photoredox Catalyst. ACS Macro Letters, 2015, 4, 566-569.	2.3	191
103	Dual Role for 1,2,4,5-Tetrazines in Polymer Networks: Combining Diels–Alder Reactions and Metal Coordination To Generate Functional Supramolecular Gels. ACS Macro Letters, 2015, 4, 458-461.	2.3	65
104	Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chemical Reviews, 2015, 115, 11503-11532.	23.0	267
105	Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10617-10622.	3.3	161
106	Iterative exponential growth of stereo- and sequence-controlled polymers. Nature Chemistry, 2015, 7, 810-815.	6.6	296
107	Brushâ€First Synthesis of Coreâ€Photodegradable Miktoarm Star Polymers via ROMP: Towards Photoresponsive Selfâ€Assemblies. Macromolecular Rapid Communications, 2014, 35, 168-173.	2.0	50
108	Brushâ€first and Click: Efficient Synthesis of Nanoparticles that Degrade and Release Doxorubicin in Response to Light. Photochemistry and Photobiology, 2014, 90, 380-385.	1.3	28

#	Article	IF	CITATIONS
109	Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nature Communications, 2014, 5, 5460.	5.8	231
110	Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers. Journal of the American Chemical Society, 2014, 136, 9464-9470.	6.6	82
111	Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP. ACS Macro Letters, 2014, 3, 854-857.	2.3	86
112	A Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. Journal of the American Chemical Society, 2014, 136, 5896-5899.	6.6	338
113	Quantum rotation and translation of hydrogen molecules encapsulated inside C ₆₀ : temperature dependence of inelastic neutron scattering spectra. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110627.	1.6	32
114	Addressable Carbene Anchors for Gold Surfaces. Journal of the American Chemical Society, 2013, 135, 7418-7421.	6.6	217
115	Synthesis of Model Network Hydrogels via Tetrazineâ€ <scp>O</scp> lefin Inverse Electron Demand Dielsâ€ <scp>A</scp> lder Cycloaddition. Macromolecular Symposia, 2013, 329, 108-112.	0.4	19
116	Photoâ€controlled Growth of Telechelic Polymers and Endâ€linked Polymer Gels. Angewandte Chemie - International Edition, 2013, 52, 2235-2238.	7.2	158
117	Reply to Stadler: Combining network disassembly spectrometry with rheology/spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1973.	3.3	17
118	Particles without a Box: Brush-first Synthesis of Photodegradable PEG Star Polymers under Ambient Conditions. Journal of Visualized Experiments, 2013, , .	0.2	11
119	Counting primary loops in polymer gels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19119-19124.	3.3	189
120	Application of $\langle \sup 1 \langle \sup \rangle$ H DOSY for Facile Measurement of Polymer Molecular Weights. Macromolecules, 2012, 45, 9595-9603.	2.2	175
121	Inelastic neutron scattering investigations of the quantum molecular dynamics of a H <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> molecule entrapped inside a fullerene cage. Physical Review B. 2012, 85	1.1	45
122	"Brush-First―Method for the Parallel Synthesis of Photocleavable, Nitroxide-Labeled Poly(ethylene) Tj ETQqC	0.0 rgBT	/Oyerlock 10
123	Using EPR To Compare PEG- <i>branch</i> -nitroxide "Bivalent-Brush Polymers―and Traditional PEG Bottle–Brush Polymers: Branching Makes a Difference. Macromolecules, 2012, 45, 8310-8318.	2.2	46
124	Influence of rare-earth ions on SiO ₂ 6€"RE ₂ 0 ₃ glass structure. Journal of Physics Condensed Matter, 2011, 23, 065404.	0.7	18
125	Core-Clickable PEG- <i>Branch</i> -Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. Journal of the American Chemical Society, 2011, 133, 559-566.	6.6	320
126	EPR Study of Spin Labeled Brush Polymers in Organic Solvents. Journal of the American Chemical Society, 2011, 133, 19953-19959.	6.6	76

#	Article	IF	Citations
127	Timeâ€resolved investigations of erbium ions in ZBLANâ€based glasses and glass ceramics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2649-2652.	0.8	7
128	Some hydrogels having novel molecular structures. Progress in Polymer Science, 2010, 35, 332-337.	11.8	137
129	Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Current Opinion in Chemical Biology, 2010, 14, 774-780. Inelastic neutron scattering of a quantum translator-rotator encapsulated in a closed fullerene	2.8	284
130	cage: Isotope effects and translation-rotation coupling in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub><mxmlns:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mrow. b,<="" physical="" review="" td=""><td>nml:mo>@</td><td>)<</td></mml:mrow.></mxmlns:mml="http:></mml:mrow></mml:math>	nml:mo>@)<
131	2010, 82, . A Magnetic Switch for Spin-Catalyzed Interconversion of Nuclear Spin Isomers. Journal of the American Chemical Society, 2010, 132, 4042-4043.	6.6	32
132	Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules, 2010, 43, 10326-10335.	2.2	289
133	Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition "Click―Chemistry. Macromolecular Rapid Communications, 2008, 29, 1052-1072.	2.0	302
134	Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chemical Communications, 2008, , 3064.	2.2	169
135	Synthesis of Photocleavable Linear Macromonomers by ATRP and Star Macromonomers by a Tandem ATRPâ°Click Reaction:Â Precursors to Photodegradable Model Networks. Macromolecules, 2007, 40, 3589-3598.	2.2	148
136	Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces:Â Controlling Surface Functionality through Click Chemistry. Journal of the American Chemical Society, 2006, 128, 11356-11357.	6.6	330
137	Synthesis of Degradable Model Networks via ATRP and Click Chemistry. Journal of the American Chemical Society, 2006, 128, 6564-6565.	6.6	214
138	Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: An insight into the surface compositions, topographies, and morphologies. Journal of Polymer Science Part A, 2004, 42, 6193-6208.	2.5	206