
Riccardo Pellegrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silicaâ^'Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. Journal of Physical Chemistry C, 2009, 113, 10485-10492.	3.1	124
2	In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 2017, 283, 119-126.	4.4	103
3	A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts. Catalysis Science and Technology, 2016, 6, 4910-4922.	4.1	96
4	Graphitization of Activated Carbons: A Molecular-level Investigation by INS, DRIFT, XRD and Raman Techniques. Physics Procedia, 2016, 85, 20-26.	1.2	68
5	Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction. Journal of Physical Chemistry C, 2017, 121, 18202-18213.	3.1	67
6	Effect of reduction in liquid phase on the properties and the catalytic activity of Pd/Al2O3 catalysts. Journal of Catalysis, 2012, 287, 44-54.	6.2	62
7	Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al ₂ 0 ₃ . ACS Catalysis, 2014, 4, 187-194.	11.2	62
8	Preparation of Supported Pd Catalysts: From the Pd Precursor Solution to the Deposited Pd2+ Phase. Langmuir, 2010, 26, 11204-11211.	3.5	61
9	Palladium Carbide and Hydride Formation in the Bulk and at the Surface of Palladium Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 12029-12037.	3.1	61
10	0.5wt.% Pd/C catalyst for purification of terephthalic acid: Irreversible deactivation in industrial plants. Journal of Catalysis, 2011, 280, 150-160.	6.2	57
11	Role of the Support in Determining the Vibrational Properties of Carbonyls Formed on Pd Supported on SiO2â ^{~,} Al2O3, Al2O3, and MgO. Journal of Physical Chemistry C, 2007, 111, 7021-7028.	3.1	54
12	Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discussions, 2018, 208, 187-205.	3.2	47
13	Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 4085-4094.	3.1	45
14	Influence of K-doping on a Pd/SiO2–Al2O3 catalyst. Journal of Catalysis, 2009, 267, 40-49.	6.2	44
15	Pd-Supported Catalysts: Evolution of Support Porous Texture along Pd Deposition and Alkali-Metal Doping. Langmuir, 2009, 25, 6476-6485.	3.5	34
16	Dynamics of Reactive Species and Reactant-Induced Reconstruction of Pt Clusters in Pt/Al ₂ O ₃ Catalysts. ACS Catalysis, 2019, 9, 7124-7136.	11.2	31
17	The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catalysis Today, 2019, 336, 40-44.	4.4	29
18	Direct IR observation of vibrational properties of carbonyl species formed on Pd nano-particles supported on amorphous carbon: comparison with Pd/SiO2–Al2O3. Physical Chemistry Chemical Physics, 2006, 8, 3676-3681.	2.8	28

#	Article	IF	CITATIONS
19	Progress in the Characterization of the Surface Species in Activated Carbons by means of INS Spectroscopy Coupled with Detailed DFT Calculations. Advances in Condensed Matter Physics, 2015, 2015, 1-8.	1.1	22
20	The effect of surface chemistry on the performances of Pd-based catalysts supported on activated carbons. Catalysis Science and Technology, 2017, 7, 4162-4172.	4.1	21
21	Looking for the active hydrogen species in a 5Âwt% Pt/C catalyst: a challenge for inelastic neutron scattering. Faraday Discussions, 2018, 208, 227-242.	3.2	20
22	Dynamic Behavior of Pd/P4VP Catalyst during the Aerobic Oxidation of 2-Propanol: A Simultaneous SAXS/XAS/MS Operando Study. ACS Catalysis, 2018, 8, 6870-6881.	11.2	13
23	How do the graphenic domains terminate in activated carbons and carbon-supported metal catalysts?. Carbon, 2020, 169, 357-369.	10.3	9
24	Hydrogenation of ethylene over palladium: evolution of the catalyst structure by operando synchrotron-based techniques. Faraday Discussions, 2021, 229, 197-207.	3.2	9
25	Evidence for H ₂ -Induced Ductility in a Pt/Al ₂ O ₃ Catalyst. ACS Catalysis, 2022, 12, 5979-5989.	11.2	9
26	Formation and growth of palladium nanoparticles inside porous poly(4-vinyl-pyridine) monitored by operando techniques: The role of different reducing agents. Catalysis Today, 2017, 283, 144-150.	4.4	8
27	Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles. Data in Brief, 2019, 24, 103954.	1.0	8
28	Preparation of Pd/C catalysts: from the Pd-precursor solution to the final systems. Studies in Surface Science and Catalysis, 2006, 162, 721-728.	1.5	7
29	Assessing the functional groups in activated carbons through a multi-technique approach. Catalysis Science and Technology, 2022, 12, 1271-1288.	4.1	7
30	Changes of Pd Oxidation State in Pd/Al2O3 Catalysts Using Modulated Excitation DRIFTS. Catalysts, 2021, 11, 116.	3.5	6
31	Deactivation of Industrial Pd/Al ₂ O ₃ Catalysts by Ethanol: A Spectroscopic Study. ChemCatChem, 2021, 13, 900-908.	3.7	5
32	Gas phase <i>vs.</i> liquid phase: monitoring H ₂ and CO adsorption phenomena on Pt/Al ₂ O ₃ by IR spectroscopy. Catalysis Science and Technology, 2022, 12, 1359-1367.	4.1	5
33	Investigation of carbon and alumina supported Pd catalysts during catalyst preparation. Studies in Surface Science and Catalysis, 2010, , 437-440.	1.5	2
34	Pd supported catalysts: Evolution of the support during Pd deposition and K doping. Studies in Surface Science and Catalysis, 2010, , 433-436.	1.5	0