Mark Vogelsberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1518-1547.	4.4	1,694
2	The Aquarius Project: the subhaloes of galactic haloes. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1685-1711.	4.4	1,462
3	Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.	4.4	1,144
4	First results from the IllustrisTNG simulations: matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 475, 676-698.	4.4	1,035
5	First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 648-675.	4.4	983
6	Properties of galaxies reproduced by a hydrodynamic simulation. Nature, 2014, 509, 177-182.	27.8	979
7	First results from the IllustrisTNG simulations: the galaxy colour bimodality. Monthly Notices of the Royal Astronomical Society, 2018, 475, 624-647.	4.4	894
8	Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 445, 175-200.	4.4	805
9	First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1206-1224.	4.4	746
10	Simulating galaxy formation with black hole driven thermal and kinetic feedback. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3291-3308.	4.4	725
11	A model for cosmological simulations of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3031-3067.	4.4	711
12	The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 2019, 6,	22.7	698
13	First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	643
14	The diversity and similarity of simulated cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2010, 402, 21-34.	4.4	639
15	First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3234-3261.	4.4	510
16	The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. Monthly Notices of the Royal Astronomical Society, 2015, 449, 49-64.	4.4	472
17	First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3196-3233.	4.4	453
18	The Illustris simulation: the evolving population of black holes across cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 452, 575-596.	4.4	452

#	Article	IF	CITATIONS
19	Subhaloes in self-interacting galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3740-3752.	4.4	431
20	The illustris simulation: Public data release. Astronomy and Computing, 2015, 13, 12-37.	1.7	412
21	Constraining self-interacting dark matter with the Milky Way's dwarf spheroidals. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L20-L24.	3.3	326
22	The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2371-2390.	4.4	319
23	Cosmological simulations of galaxy formation. Nature Reviews Physics, 2020, 2, 42-66.	26.6	317
24	Moving mesh cosmology: tracing cosmological gas accretion. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3353-3370.	4.4	288
25	Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4056-4072.	4.4	270
26	A model for cosmological simulations of galaxy formation physics: multi-epoch validation. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1985-2004.	4.4	242
27	The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4140-4159.	4.4	236
28	Prospects for detecting supersymmetric dark matter in the Galactic halo. Nature, 2008, 456, 73-76.	27.8	208
29	Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4559-4570.	4.4	208
30	Phase-space structure in the local dark matter distribution and its signature in direct detection experiments. Monthly Notices of the Royal Astronomical Society, 2009, 395, 797-811.	4.4	202
31	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3548-3563.	4.4	201
32	The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3976-3996.	4.4	195
33	SELF-PERPETUATING SPIRAL ARMS IN DISK GALAXIES. Astrophysical Journal, 2013, 766, 34.	4.5	193
34	The formation of massive, compact galaxies at zÂ=Â2 in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 449, 361-372.	4.4	187
35	ETHOS – an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1399-1416.	4.4	185
36	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4817-4840.	4.4	176

#	Article	IF	CITATIONS
37	GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE. Astrophysical Journal Letters, 2015, 804, L40.	8.3	174
38	Moving mesh cosmology: numerical techniques and global statistics. Monthly Notices of the Royal Astronomical Society, 2012, 425, 3024-3057.	4.4	169
39	Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3684-3698.	4.4	166
40	Galaxy morphology and star formation in the Illustris Simulation at <i>z</i> Â=Â0. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1886-1908.	4.4	155
41	ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe. Physical Review D, 2016, 93, .	4.7	155
42	Moving mesh cosmology: the hydrodynamics of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2999-3027.	4.4	144
43	Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135.	4.5	139
44	Numerical simulations of the dark universe: State of the art and the next decade. Physics of the Dark Universe, 2012, 1, 50-93.	4.9	137
45	The role of mergers and halo spin in shaping galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3083-3098.	4.4	134
46	The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 477, 450-479.	4.4	133
47	The shape of dark matter haloes in the Aquarius simulations: evolution and memory. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1377-1391.	4.4	132
48	Dust formation in Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3775-3800.	4.4	127
49	The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1888-1906.	4.4	127
50	Assembly history and structure of galactic cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1373-1382.	4.4	125
51	The evolution of the mass-metallicity relation and its scatter in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	123
52	The impact of feedback on cosmological gas accretion. Monthly Notices of the Royal Astronomical Society, 2015, 448, 59-74.	4.4	120
53	Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3766-3787.	4.4	120
54	Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 237-249.	4.4	117

#	Article	IF	CITATIONS
55	Moving-mesh cosmology: characteristics of galaxies and haloes. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2027-2048.	4.4	116
56	Simulating the dust content of galaxies: successes and failures. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1505-1521.	4.4	109
57	Spreading out and staying sharp – creating diverse rotation curves via baryonic and self-interaction effects. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2283-2295.	4.4	109
58	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	4.4	109
59	Following the flow: tracer particles in astrophysical fluid simulations. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1426-1442.	4.4	107
60	Synthetic galaxy images and spectra from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2753-2771.	4.4	106
61	Damped Lyman α absorbers as a probe of stellar feedback. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2313-2324.	4.4	105
62	Jellyfish galaxies with the IllustrisTNG simulations – I. Gas-stripping phenomena in the full cosmological context. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1042-1066.	4.4	102
63	Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2391-2414.	4.4	100
64	Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 768-792.	4.4	100
65	High-redshift <i>JWST</i> predictions from IllustrisTNG: dust modelling and galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5167-5201.	4.4	99
66	The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.	4.4	97
67	The diverse evolutionary paths of simulated high- <i>z</i> massive, compact galaxies to <i>z</i> = 0. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1030-1048.	4.4	96
68	Streams and caustics: the fine-grained structure of \hat{I} cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1419-1438.	4.4	95
69	First Star-Forming Structures in Fuzzy Cosmic Filaments. Physical Review Letters, 2019, 123, 141301.	7.8	94
70	The fine-grained phase-space structure of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 0, 385, 236-254.	4.4	93
71	Moving-mesh cosmology: properties of gas discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2224-2238.	4.4	92
72	HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS. Astrophysical Journal, 2013, 772, 97.	4.5	92

#	Article	IF	CITATIONS
73	Scattering, damping, and acoustic oscillations: Simulating the structure of dark matter halos with relativistic force carriers. Physical Review D, 2014, 90, .	4.7	91
74	Recoiling black holes: prospects for detection and implications of spin alignment. Monthly Notices of the Royal Astronomical Society, 2016, 456, 961-989.	4.4	90
75	THE CATERPILLAR PROJECT: A LARGE SUITE OF MILKY WAY SIZED HALOS. Astrophysical Journal, 2016, 818, 10.	4.5	88
76	Introducing the <scp>thesan</scp> project: radiation-magnetohydrodynamic simulations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4005-4030.	4.4	88
77	Galaxy mergers on a moving mesh: a comparison with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1992-2016.	4.4	87
78	Simulating galactic dust grain evolution on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2851-2886.	4.4	87
79	QUASI-RESONANT THEORY OF TIDAL INTERACTIONS. Astrophysical Journal, 2010, 725, 353-368.	4.5	86
80	Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4004-4024.	4.4	86
81	The impact of galactic feedback on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2015, 448, 895-909.	4.4	82
82	Zooming in on accretion – I. The structure of halo gas. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2881-2904.	4.4	80
83	Reproducing the kinematics of damped Lyman $\hat{I}\pm$ systems. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1834-1846.	4.4	77
84	Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L16-L20.	3.3	75
85	Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5334-5354.	4.4	75
86	Simulating the interstellar medium and stellar feedback on a moving mesh: implementation and isolated galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4233-4260.	4.4	72
87	Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays. Monthly Notices of the Royal Astronomical Society, 2016, 456, 739-755.	4.4	71
88	The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2073-2093.	4.4	71
89	Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation. Astrophysical Journal, Supplement Series, 2018, 238, 33.	7.7	71
90	Shape of dark matter haloes in the Illustris simulation: effects of baryons. Monthly Notices of the Royal Astronomical Society, 2019, 484, 476-493.	4.4	71

#	Article	IF	CITATIONS
91	<scp>arepo-rt</scp> : radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2019, 485, 117-149.	4.4	69
92	The physics of multiphase gas flows: fragmentation of a radiatively cooling gas cloud in a hot wind. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5401-5421.	4.4	69
93	A census of cool-core galaxy clusters in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1809-1831.	4.4	68
94	An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2770-2786.	4.4	67
95	On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2323-2336.	4.4	67
96	Atomic and molecular gas in IllustrisTNG galaxies at low redshift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1529-1550.	4.4	67
97	Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4760-4780.	4.4	66
98	A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy Scaling Relations. Astrophysical Journal, 2019, 871, 21.	4.5	65
99	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. Astrophysical Journal, 2019, 882, 137.	4.5	65
100	Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1962-1980.	4.4	64
101	Supermassive black holes in cosmological simulations I: <i>M</i> BH â^' <i>M</i> â<† relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1940-1975.	4.4	63
102	The inner structure of early-type galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1824-1848.	4.4	62
103	Disruption of giant molecular clouds and formation of bound star clusters under the influence of momentum stellar feedback. Monthly Notices of the Royal Astronomical Society, 2019, 487, 364-380.	4.4	62
104	Direct detection of self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1722-1735.	4.4	60
105	The large-scale properties of simulated cosmological magnetic fields. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4000-4020.	4.4	60
106	Large-scale mass distribution in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3024-3035.	4.4	60
107	The colours of satellite galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L6-L10.	3.3	59
108	Revealing the galaxy–halo connection in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5693-5711.	4.4	59

#	Article	IF	CITATIONS
109	Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4413-4443.	4.4	59
110	Secondary infall and the pseudo-phase-space density profiles of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2010, 406, 137-146.	4.4	58
111	On the OVI abundance in the circumgalactic medium of low-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2966-2982.	4.4	58
112	Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2462-2473.	4.4	58
113	Galaxy formation with BECDM – II. Cosmic filaments and first galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2027-2044.	4.4	58
114	Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions. Monthly Notices of the Royal Astronomical Society, 2016, 461, 710-727.	4.4	57
115	The <scp>hestia</scp> project: simulations of the Local Group. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2968-2983.	4.4	56
116	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
117	Intrinsic alignments of galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 790-823.	4.4	55
118	A Deep Learning Approach to Galaxy Cluster X-Ray Masses. Astrophysical Journal, 2019, 876, 82.	4.5	55
119	The fate of disc galaxies in IllustrisTNG clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2673-2703.	4.4	53
120	Moving-mesh cosmology: properties of neutral hydrogen in absorption. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3341-3352.	4.4	52
121	Self-Interacting Dark Matter Subhalos in the MilkyÂWay's Tides. Physical Review Letters, 2020, 124, 141102.	7.8	52
122	The Hubble Sequence at z â^1⁄4 0 in the IllustrisTNG simulation with deep learning. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1859-1879.	4.4	51
123	Characterization of dark-matter-induced anisotropies in the diffuse gamma-ray background. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1529-1553.	4.4	49
124	A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 397-414.	4.4	49
125	Probing the Hot X-Ray Corona around the Massive Spiral Galaxy, NGC 6753, Using Deep XMM-Newton Observations. Astrophysical Journal, 2017, 850, 98.	4.5	49
126	Caustics in growing cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2009, 400, 2174-2184.	4.4	47

#	Article	IF	CITATIONS
127	Diverse dark matter density at sub-kiloparsec scales in MilkyÂWay satellites: Implications for the nature of dark matter. Physical Review D, 2019, 100, .	4.7	47
128	The impact of baryonic discs on the shapes and profiles of self-interacting dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2018, 479, 359-367.	4.4	46
129	Evaporating the Milky Way halo and its satellites with inelastic self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5437-5452.	4.4	46
130	Hydrogen reionization in the Illustris universe. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3594-3611.	4.4	44
131	Galaxy mergers moulding the circum-galactic medium – I. The impact of a major merger. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1160-1176.	4.4	44
132	X-ray signatures of black hole feedback: hot galactic atmospheres in IllustrisTNG and X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 549-570.	4.4	44
133	The <scp>thesan</scp> project: properties of the intergalactic medium and its connection to reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4909-4933.	4.4	44
134	An instability of feedback-regulated star formation in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2301-2314.	4.4	42
135	Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4343-4360.	4.4	42
136	ETHOS – an effective theory of structure formation: predictions for the high-redshift Universe – abundance of galaxies and reionization. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2886-2899.	4.4	42
137	The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4211-4240.	4.4	41
138	HOT GASEOUS CORONAE AROUND SPIRAL GALAXIES: PROBING THE ILLUSTRIS SIMULATION. Astrophysical Journal, 2015, 804, 72.	4.5	40
139	A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 463, 477-488.	4.4	40
140	Effects of simulated cosmological magnetic fields on the galaxy population. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L69-L73.	3.3	40
141	Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction. Astrophysical Journal Letters, 2017, 837, L18.	8.3	40
142	Cas-phase metallicity gradients of TNG50 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3024-3048.	4.4	40
143	Separate Universe simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2079-2092.	4.4	39
144	Modelling galactic conformity with the colour–halo age relation in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2016, 455, 185-198.	4.4	38

#	Article	IF	CITATIONS
145	Dust in and around galaxies: dust in cluster environments and its impact on gas cooling. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4870-4883.	4.4	38
146	Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3702-3720.	4.4	38
147	The physical origins and dominant emission mechanisms of Lyman alpha haloes: results from the TNG50 simulation in comparison to MUSE observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5129-5152.	4.4	38
148	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4359-4382.	4.4	38
149	A constrained transport scheme for MHD on unstructured static and moving meshes. Monthly Notices of the Royal Astronomical Society, 2014, 442, 43-55.	4.4	37
150	The dust-continuum size of TNG50 galaxies at <i>z</i> Â= 1–5: a comparison with the distribution of stellar light, stars, dust, and H2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3321-3334.	4.4	37
151	A rumble in the dark: signatures of self-interacting dark matter in supermassive black hole dynamics and galaxy density profiles. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2845-2854.	4.4	36
152	The <scp>thesan</scp> project: Lyman-α emission and transmission during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3243-3265.	4.4	36
153	THE EFFECTS OF PATCHY REIONIZATION ON SATELLITE GALAXIES OF THE MILKY WAY. Astrophysical Journal, 2012, 746, 109.	4.5	35
154	The structure and assembly history of cluster-sized haloes in self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 474, 746-759.	4.4	35
155	The interplay of self-interacting dark matter and baryons in shaping the halo evolution. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4563-4573.	4.4	35
156	Gravitational lensing and the power spectrum of dark matter substructure: Insights from the ETHOS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body simulations. Physical Review D, 2018, 98, .	4.7	32
157	The cumulative star formation histories of dwarf galaxies with TNG50. I: environment-driven diversity and connection to quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1652-1674.	4.4	32
158	Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.	10.1	32
159	The distinct stellar-to-halo mass relations of satellite and central galaxies: insights from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3957-3975.	4.4	32
160	The mass profile of the Milky Way to the virial radius from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3483-3493.	4.4	31
161	High-redshift <i>JWST</i> predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4747-4768.	4.4	31
162	A missing outskirts problem? Comparisons between stellar haloes in the Dragonfly Nearby Galaxies Survey and the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4570-4604.	4.4	31

#	Article	IF	CITATIONS
163	The <scp>thesan</scp> project: predictions for multitracer line intensity mapping in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3857-3878.	4.4	31
164	Accurately simulating anisotropic thermal conduction on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2016, 458, 410-424.	4.4	30
165	The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence. Astrophysical Journal, Supplement Series, 2022, 259, 61.	7.7	30
166	Non-spherical similarity solutions for dark halo formation. Monthly Notices of the Royal Astronomical Society, 2011, 414, 3044-3051.	4.4	29
167	The onset of gravothermal core collapse in velocity-dependent self-interacting dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5327-5339.	4.4	29
168	H <i>α</i> emission in local galaxies: star formation, time variability, and the diffuse ionized gas. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2904-2929.	4.4	29
169	Cosmic X-ray and gamma-ray background from dark matter annihilation. Physical Review D, 2011, 83, .	4.7	28
170	Bound and unbound substructures in Galaxy-scale dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2475-2484.	4.4	28
171	Empirical constraints for the magnitude and composition of galactic winds. Astrophysics and Space Science, 2014, 349, 873-879.	1.4	27
172	Stellar orbit evolution in close circumstellar disc encounters. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2010-2029.	4.4	27
173	Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L18-L22.	3.3	27
174	Baryons in the Cosmic Web of IllustrisTNG – II. The connection among galaxies, haloes, their formation time, and their location in the Cosmic Web. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5747-5758.	4.4	27
175	Simulating the interstellar medium of galaxies with radiative transfer, non-equilibrium thermochemistry, and dust. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5732-5748.	4.4	27
176	Supermassive black holes in cosmological simulations – II: the AGN population and predictions for upcoming X-ray missions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3015-3042.	4.4	27
177	On the density profile of dark matter substructure in gravitational lens galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3598-3603.	4.4	26
178	THE EFFECTS OF VARYING COSMOLOGICAL PARAMETERS ON HALO SUBSTRUCTURE. Astrophysical Journal, 2014, 786, 50.	4.5	26
179	Gas-rich and gas-poor structures through the stream velocity effect. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1625-1639.	4.4	26
180	Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.	4.4	26

#	Article	IF	CITATIONS
181	High-redshift predictions from IllustrisTNG – III. Infrared luminosity functions, obscured star formation, and dust temperature of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5560-5578.	4.4	26
182	The evolution of the barred galaxy population in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5339-5357.	4.4	26
183	Formation and evolution of young massive clusters in galaxy mergers: the <tt>SMUGGLE</tt> view. Monthly Notices of the Royal Astronomical Society, 2022, 514, 265-279.	4.4	26
184	Dark matter caustics. Monthly Notices of the Royal Astronomical Society, 2009, 392, 281-286.	4.4	25
185	Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2075-2094.	4.4	25
186	Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO and SFR data. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3158-3178.	4.4	25
187	Multidimensional, compressible viscous flow on a moving Voronoi mesh. Monthly Notices of the Royal Astronomical Society, 2013, 428, 254-279.	4.4	24
188	The missing satellite problem in 3D. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4473-4481.	4.4	24
189	Shock finding on a moving-mesh – II. Hydrodynamic shocks in the Illustris universe. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4441-4465.	4.4	24
190	Forward and backward galaxy evolution in comoving cumulative number density space. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4872-4885.	4.4	24
191	Towards an improved model of self-interacting dark matter haloes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 038-038.	5.4	24
192	The Supersonic Project: Shining Light on SIGOs—A New Formation Channel for Globular Clusters. Astrophysical Journal Letters, 2019, 878, L23.	8.3	24
193	The splashback boundary of haloes in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4649-4666.	4.4	24
194	Correlations between Black Holes and Host Galaxies in the Illustris and IllustrisTNG Simulations. Astrophysical Journal, 2020, 895, 102.	4.5	24
195	Simulating the effect of photoheating feedback during reionization. Monthly Notices of the Royal Astronomical Society, 2019, 488, 419-437.	4.4	23
196	ETHOS – an Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2019, 487, 522-536.	4.4	23
197	Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3003-3013.	4.4	22
198	Characterizing hydrostatic mass bias with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 506, 2533-2550.	4.4	22

#	Article	IF	CITATIONS
199	Neutrino signatures on the high-transmission regions of the Lyman \$oldsymbol {alpha }\$ forest. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3670-3677.	4.4	21
200	Discriminating topology in galaxy distributions using network analysis. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2690-2700.	4.4	21
201	Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L35-L39.	3.3	21
202	Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5538-5550.	4.4	21
203	A redshift-dependent IRX–β dust attenuation relation for TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4773-4794.	4.4	21
204	Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.	4.4	21
205	Finding Universal Relations in Subhalo Properties with Artificial Intelligence. Astrophysical Journal, 2022, 927, 85.	4.5	21
206	Core-collapse, evaporation, and tidal effects: the life story of a self-interacting dark matter subhalo. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4845-4868.	4.4	21
207	Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris Simulation. Astrophysical Journal, 2018, 853, 194.	4.5	20
208	ETHOS – an effective parametrization and classification for structure formation: the non-linear regime at z ≳ 5. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3403-3419.	4.4	20
209	Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2922-2933.	4.4	20
210	Properties of the ionized CGM and IGM: tests for galaxy formation models from the Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5131-5143.	4.4	20
211	The effects of subgrid models on the properties of giant molecular clouds in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5862-5872.	4.4	20
212	Early-type galaxy density profiles from IllustrisTNG – II. Evolutionary trend of the total density profile. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5722-5738.	4.4	19
213	A study of stellar orbit fractions: simulated IllustrisTNG galaxies compared to CALIFA observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 842-854.	4.4	19
214	Gas flows in galaxy mergers: supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2720-2735.	4.4	18
215	Degeneracies between self-interacting dark matter and supernova feedback as cusp-core transformation mechanisms. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3458-3481.	4.4	18
216	Reducing noise in moving-grid codes with strongly-centroidal Lloyd mesh regularization. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3853-3862.	4.4	17

#	Article	IF	CITATIONS
217	DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy ^{â^—} . Astrophysical Journal, 2017, 837, 54.	4.5	17
218	Is there enough star formation in simulated protoclusters?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1803-1822.	4.4	17
219	On the formation of massive quiescent galaxies with diverse morphologies in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 213-228.	4.4	16
220	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.	4.5	15
221	The origin of the dust extinction curve in milky way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 548-559.	4.4	15
222	Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass. Astronomy and Astrophysics, 2022, 660, A20.	5.1	15
223	Galaxy formation with local photoionization feedback – II. Effect of X-ray emission from binaries and hot gas. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2516-2529.	4.4	14
224	Non-ideal magnetohydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2476-2492.	4.4	14
225	The Supersonic Project: rotational effects of supersonic motions on the first structures in the Universe. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3108-3117.	4.4	14
226	ETHOS – an effective theory of structure formation: formation of the first haloes and their stars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5474-5489.	4.4	14
227	The Formation History of Subhalos and the Evolution of Satellite Galaxies. Astrophysical Journal, 2020, 893, 139.	4.5	14
228	ETHOS ―an effective theory of structure formation: Impact of dark acoustic oscillations on cosmic dawn. Physical Review D, 2021, 103, .	4.7	14
229	Effects of initial density profiles on massive star cluster formation in giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6157-6169.	4.4	14
230	Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5930-5939.	4.4	12
231	AREPO-MCRT: Monte Carlo Radiation Hydrodynamics on a Moving Mesh. Astrophysical Journal, 2020, 905, 27.	4.5	12
232	THE CALIFA AND HIPASS CIRCULAR VELOCITY FUNCTION FOR ALL MORPHOLOGICAL GALAXY TYPES. Astrophysical Journal Letters, 2016, 827, L36.	8.3	11
233	Joint galaxy–galaxy lensing and clustering constraints on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5804-5833.	4.4	11
234	Hot and counter-rotating star-forming disc galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 503, 726-742.	4.4	11

#	Article	IF	CITATIONS
235	The halo mass function and inner structure of ETHOS haloes at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 506, 128-138.	4.4	11
236	The Circumgalactic Medium from the CAMELS Simulations: Forecasting Constraints on Feedback Processes from Future Sunyaev–Zeldovich Observations. Astrophysical Journal, 2022, 933, 133.	4.5	11
237	Radiative AGN feedback on a moving mesh: the impact of the galactic disc and dust physics on outflow properties. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1143-1164.	4.4	10
238	The Supersonic Project: To Cool or Not to Cool Supersonically Induced Gas Objects (SIGOs)?. Astrophysical Journal, 2021, 906, 25.	4.5	10
239	The impact of inelastic self-interacting dark matter on the dark matter structure of a Milky Way halo. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10
240	Cosmology with One Galaxy?. Astrophysical Journal, 2022, 929, 132.	4.5	10
241	Dust entrainment in galactic winds. Monthly Notices of the Royal Astronomical Society, 2021, 503, 336-343.	4.4	9
242	The MUSE Hubble Ultra Deep Field Survey. XVI. The angular momentum of low-mass star-forming galaxies: A cautionary tale and insights from TNG50. Astronomy and Astrophysics, 0, , .	5.1	9
243	Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes. Astrophysical Journal, 2021, 918, 7.	4.5	9
244	The Supersonic Project: SIGOs, A Proposed Progenitor to Globular Clusters, and Their Connections to Gravitational-wave Anisotropies. Astrophysical Journal, 2021, 922, 86.	4.5	9
245	Cold and hot gas distribution around the Milky-Way – M31 system in the HESTIA simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3717-3737.	4.4	9
246	Sloshing of Galaxy Cluster Core Plasma in the Presence of Self-interacting Dark Matter. Astrophysical Journal, 2019, 882, 119.	4.5	8
247	The impact of galaxy selection on the splashback boundaries of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 513, 835-852.	4.4	8
248	The formation of low surface brightness galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5840-5852.	4.4	8
249	The large-scale distribution of ionized metals in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 510, 399-412.	4.4	6
250	Percent-level constraints on baryonic feedback with spectral distortion measurements. Physical Review D, 2022, 105, .	4.7	6
251	Studying galaxy cluster morphological metrics with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 3394-3413.	4.4	5
252	Impact of gas-based seeding on supermassive black hole populations at <i>z</i> ≥ 7. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2012-2036.	4.4	5

Mark Vogelsberger

#	Article	IF	CITATIONS
253	AGN and star formation at cosmic noon: comparison of data to theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 508, 762-780.	4.4	5
254	Complexity Phenomena and ROMA of the Earth's Magnetospheric Cusp, Hydrodynamic Turbulence, and the Cosmic Web. Pure and Applied Geophysics, 2015, 172, 2025-2043.	1.9	4
255	Simulating dust grain-radiation coupling on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1344-1354.	4.4	4
256	Statistics of Two-point Correlation and Network Topology for Lyman Alpha Emitters at <i>z</i> â‰^ 2.67. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	3
257	Impact of gas spin and Lyman–Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse. Monthly Notices of the Royal Astronomical Society, 2021, 510, 177-196.	4.4	3
258	Hermeian haloes: Field haloes that interacted with both the Milky Way and M31. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3612-3625.	4.4	3
259	Early-type galaxy density profiles from IllustrisTNG – III. Effects on outer kinematic structure. Monthly Notices of the Royal Astronomical Society, 2022, 513, 6134-6151.	4.4	3
260	Quenched, bulge-dominated, but dynamically cold galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5062-5074.	4.4	2
261	Coevolution of Brightest Cluster Galaxies and Their Host Clusters in IllustrisTNG. Astrophysical Journal, 2022, 931, 31.	4.5	2
262	Modeling the Observability of Recoiling Black Holes as Offset Quasars. Proceedings of the International Astronomical Union, 2015, 11, 317-318.	0.0	0