Zhong-Zhi Bai

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/9575960/publications.pdf
Version: 2024-02-01

[^0]2.1

162

$$
\begin{aligned}
& \text { On inexact hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear } \\
& \text { systems. Linear Algebra and Its Applications, 2008, 428, 413-440. }
\end{aligned}
$$

\#	Article	IF	Citations
19	New preconditioners for saddle point problems. Applied Mathematics and Computation, 2006, 172, 762-771.	2.2	130
20	Modulusâ€based synchronous multisplitting iteration methods for linear complementarity problems. Numerical Linear Algebra With Applications, 2013, 20, 425-439.	1.6	123
21	Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numerical Algorithms, 2013, 62, 59-77.	1.9	116
22	On Greedy Randomized Kaczmarz Method for Solving Large Sparse Linear Systems. SIAM Journal of Scientific Computing, 2018, 40, A592-A606.	2.8	114
23	On semi-convergence of parameterized Uzawa methods for singular saddle point problems. Linear Algebra and Its Applications, 2009, 431, 808-817.	0.9	110
24	On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems. Computing (Vienna/New York), 2010, 89, 171-197.	4.8	108
25	Matrix multisplitting relaxation methods for linear complementarity problems. International Journal of Computer Mathematics, 1997, 63, 309-326.	1.8	106
26	Motivations and realizations of Krylov subspace methods for large sparse linear systems. Journal of Computational and Applied Mathematics, 2015, 283, 71-78.	2.0	102
27	A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Computers and Mathematics With Applications, 1996, 32, 51-76.	2.7	101
28	On Inexact Preconditioners for Nonsymmetric Matrices. SIAM Journal of Scientific Computing, 2005, 26, 1710-1724.	2.8	97
29	Matrix Multisplitting Methods with Applications to Linear Complementarity Problemsâ^ๆ Parallel Asynchronous Methods. International Journal of Computer Mathematics, 2002, 79, 205-232.	1.8	85

30 Block preconditioners for elliptic PDE-constrained optimization problems. Computing (Vienna/New) Tj ETQqO 00 rgBT /Overlock 10 Tf 5

$31 \quad$| Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent |
| :--- |
| matrix equations. Numerical Linear Algebra With Applications, 2006, 13, 801-823. |

On preconditioned iteration methods for complex linear systems. Journal of Engineering

1.2

75

Mathematics, 2015, 93, 41-60.

Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear
systems. Journal of Computational and Applied Mathematics, 2006, 187, 202-226.
2.0

73

A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant
Positive Definite Symmetric Part. Numerical Algorithms, 2004, 35, 351-372.
1.9

71

A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations.
Applied Numerical Mathematics, 2007, 57, 235-252.
2.1

69

On HSS-based iteration methods for weakly nonlinear systems. Applied Numerical Mathematics, 2009,
2.1
On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Applied
Mathematics Letters, 2018, 83, 21-26.

Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Applied

Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the
39 nonsymmetric algebraic Riccati equations. Numerical Linear Algebra With Applications, 2006, 13,
1.6

65
655-674.
40 Rotated block triangular preconditioning based on PMHSS. Science China Mathematics, 2013, 56,
1.7

59
The convergence of parallel iteration algorithms for linear complementarity problems. Computers
and Mathematics With Applications, 1996, 32, 1-17.

Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian
coefficient matrices. Numerical Algorithms, 2013, 62, 655-675.

Block alternating splitting implicit iteration methods for saddleâ€point problems from timeâ€harmonic
eddy current models. Numerical Linear Algebra With Applications, 2012, 19, 914-936.
1.6

53

44 Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. Journal of Computational and Applied Mathematics, 2013, 237, 295-306.
2.0

53

Algebra and Its Applications, 2001, 330, 215-218.
0.9

49

Several splittings for non-Hermitian linear systems. Science in China Series A: Mathematics, 2008, 51,
0.5

47

46 1339-1348.

> On the convergence of additive and multiplicative splitting iterations for systems of linear equations.
> Journal of Computational and Applied Mathematics, 2003, 154, 195-214.

Preconditioners for nonsymmetric block toeplitz-like-plus-diagonal linear systems. Numerische
48 Mathematik, 2003, 96, 197-220.
1.9

45

Splitting iteration methods for non-Hermitian positive definite systems of linear equations. Hokkaido
0.3

44
Mathematical Journal, 2007, 36, 801.

Regularized HSS iteration methods for saddle-point linear systems. BIT Numerical Mathematics, 2017,
57, 287-311.
2.0

44
A Class of Incomplete Orthogonal Factorization Methods. I: Methods and Theories. BIT Numerical
Mathematics, 2001, 41, 53-70.

Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from
spatial fractional diffusion equations. Numerical Linear Algebra With Applications, 2017, 24, e2093.
1.6

43

On greedy randomized coordinate descent methods for solving large linear leastâ€squares problems.
Numerical Linear Algebra With Applications, 2019, 26, e2237.
1.6

43

On convergence rate of the randomized Kaczmarz method. Linear Algebra and Its Applications, 2018,
$58 \quad$ Fast Iterative Schemes for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory.

Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian
positive definite linear systems. Journal of Computational and Applied Mathematics, 2009, 232, 3-16.
2.0

29

63 | On the Meany inequality with applications to convergence analysis of several row-action iteration |
| :--- |
| methods. Numerische Mathematik, 2013, 124, 215-236. |

64 Title is missing!. Numerical Algorithms, 1997, 15, 347-372.
65 Modulus-based iterative methods for constrained Tikhonov regularization. Journal of Computational
and Applied Mathematics, 2017, 319, 1-13.

On inexact Newton methods based on doubling iteration scheme for non-symmetric algebraic Riccati equations. Numerical Linear Algebra With Applications, 2011, 18, 325-341.
1.6

25

Chaotic iterative methods for the linear complementarity problems. Journal of Computational and
2.0

24
Applied Mathematics, 1998, 96, 127-138.

Convergence conditions for splitting iteration methods for non-Hermitian linear systems. Linear
73

> On the convergence of nonstationary multisplitting two-stage iteration methods for hermitian
> positive definite linear systems. Journal of Computational and Applied Mathematics, 2002, 138, 287-296.
2.0

19

Weak-convergence theory of quasi-nonnegative splittings for singular matrices. Applied Numerical
2.1

19
74 Mathematics, 2003, 47, 75-89.

A modified damped Newton method for linear complementarity problems. Numerical Algorithms, 2006,
1.9

42, 207-228.

On nonsingularity of block two-by-two matrices. Linear Algebra and Its Applications, 2013, 439,
0.9

18
76 2388-2404.

On local quadratic convergence of inexact simplified Jacobiâ€"Davidson method. Linear Algebra and Its
$0.9 \quad 18$
On local quadratic convergence of
Applications, 2017, 520, 215-241.

Modulusâ€based multigrid methods for linear complementarity problems. Numerical Linear Algebra
With Applications, 2017, 24, e2105.
1.6

Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations.
Journal of Computational Physics, 2020, 404, 109117.
3.8

17

80 A class of parallel nonlinear multisplitting relaxation methods for the large sparse nonlinear
complementarity problems. Computers and Mathematics With Applications, 1996, 32, 79-95.
2.7
81 Numerical study on incomplete orthogonal factorization preconditioners. Journal of Computational
and Applied Mathematics, 2009, 226, 22-41.
2.0

16

82 On sinc discretization and banded preconditioning for linear third-order ordinary differential
equations. Numerical Linear Algebra With Applications, 2011, 18, 471-497.

> 83 On local quadratic convergence of inexact simplified Jacobiâ€"Davidson method for interior eigenpairs
> of Hermitian eigenproblems. Applied Mathematics Letters, 2017, 72, 23-28.

On banded M -splitting iteration methods for solving discretized spatial fractional diffusion equations. BIT Numerical Mathematics, 2019, 59, 1-33.

85 | Construction and analysis of structured preconditioners for block two-by-two matrices. Journal of |
| :--- |
| Shanghai University, 2004, 8, 397-405. |

$0.1 \quad 15$
Shanghai University, 2004, 8, 397-405.
1.6
82
A hybrid preconditioner of banded matrix approximation and alternating direction implicit itera
for symmetric Sincâ€"Calerkin linear systems. Linear Algebra and Its Applications, 2003, 366, 317

On order-reducible sinc discretizations and block-diagonal preconditioning methods for linear
third-order ordinary differential equations. Numerical Linear Algebra With Applications, 2014, 21
108-135.
Regularized HSS iteration methods for stabilized saddle-point problems. IMA Journal of Numerical
Analysis, 2019, 39, 1888-1923.

94 Blockwise matrix multi-splitting multi-parameter block relaxation methods*. International Journal of
$1.8 \quad 12$
Computer Mathematics, 1997, 64, 103-118.

A class of asynchronous parallel nonlinear accelerated overrelaxation methods for the nonlinear
$95 \quad \begin{aligned} & \text { A class of asynchronous paraliee nonlinear accelerated overrelaxation methods for the nonlinear } \\ & \text { complementarity problems. Journal of Computational and Applied Mathematics, 1998, 93, 35-44. }\end{aligned}$
$2.0 \quad 12$

On the convergence of parallel nonstationary multisplitting iteration methods. Journal of
Computational and Applied Mathematics, 2003, 159, 1-11.
$2.0 \quad 12$
97 Modified incomplete orthogonal factorization methods using Civens rotations. Computing 4.8 12
(Vienna/New York), 2009, 86, 53-69.

On convergence conditions of waveform relaxation methods for linear differential-algebraic equations. Journal of Computational and Applied Mathematics, 2011, 235, 2790-2804.
On convergence rate of the randomized Gauss-Seidel method. Linear Algebra and Its Applications, 2021,0.9

Block-triangular preconditioning methods for linear third-order ordinary differential equations
106 based on reduced-order sinc discretizations. Japan Journal of Industrial and Applied Mathematics, 2013, 30, 511-527.

107 Asynchronous parallel nonlinear multisplitting relaxation methods for large sparse nonlinear complementarity problems. Applied Mathematics and Computation, 1998, 92, 85-100.

109 Asynchronous multisplitting relaxation methods for linear complementarity problems. International
Journal of Computer Mathematics, 1999, 70, 519-538.

Rigorous convergence analysis of alternating variable minimization with multiplier methods for
110 quadratic programming problems with equality constraints. BIT Numerical Mathematics, 2016, 56, 399-422.
$.8 \quad 8$
8

On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems. Computers and
2.7 Mathematics With Applications, 2019, 77, 2396-2406.

A class of asynchronous parallel multisplitting blockwise relaxation methods. Parallel Computing, 1999, 25, 681-701.
$\begin{array}{ll}2.1 & 7\end{array}$

113 The power method and beyond. Applied Numerical Mathematics, 2021, 164, 29-42.
$2.1 \quad 7$

A CLASS OF MULTI-PARAMETER RELAXED PARALLEL MULTISPLITTING METHODS FOR LARGE SPARSE LINEAR
114 COMPLEMENTARITY PROBLEMS. International Journal of Parallel, Emergent and Distributed Systems,

Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces. Numerical Algorithms, 2019,
82, 1251-1277.
1.9

On the comparisons of the multisplitting unsymmetric aor methods for M-matrices. Calcolo, 1995, 32, 207-220.

Some properties of the block matrices in the parallel decomposition-type relaxation methods. Applied
Numerical Mathematics, 1999, 29, 167-170.

On preconditioned and relaxed AVMM methods for quadratic programming problems with equality constraints. Linear Algebra and Its Applications, 2017, 516, 264-285.
0.9

4

> A class of parallel hybrid two-stage iteration methods for block bordered linear systems. Applied
> Mathematics and Computation, 1999, 101, 245-267.

On approximated ILU and UCS preconditioning methods for linearized discretized steady incompressible Navier-Stokes equations. Numerical Algorithms, 2014, 65, 43-68.

On regularized Hermitian splitting iteration methods for solving discretized almostâ€isotropic spatial fractional diffusion equations. Numerical Linear Algebra With Applications, 2020, 27, e2274.

A class of asynchronous multisplitting two-stage iterations for large sparse block systems of weakly nonlinear equations. Journal of Computational and Applied Mathematics, 1999, 110, 271-286.
$2.0 \quad 2$

Continuous-time accelerated block successive overrelaxation methods for time-dependent Stokes
equations. Journal of Computational and Applied Mathematics, 2012, 236, 3265-3285.

Focused Section on Matrix Computations. Communications on Applied Mathematics and Computation,
2021, 3, 107-107.

Innovative methods and theories in numerical algebra. Numerical Linear Algebra With Applications,
2012, 19, 893-895.
1.6

0

Preface to the special issue on â€œPractical methods and rigorous theories in numerical algebra and scientific computingấ: Journal of Engineering Mathematics, 2015, 93, 1-2.

Editorial Preface: â€œPreconditioning and Iterative Methods for Algebraic Systems and Complementarity
-

[^0]: 14 Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Mathematics of Computation, 2007, 76, 287-299.

