
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957591/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Macrophage activation in response to shape memory polymer f <scp>oamâ€coated</scp> aneurysm occlusion devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1535-1544.	3.4	6
2	Mechanical and Shape Memory Properties of Electrospun Polyurethane with Thiol-Ene Crosslinking. Nanomaterials, 2022, 12, 406.	4.1	2
3	Controlling Morphology and Physio-Chemical Properties of Stimulus-Responsive Polyurethane Foams by Altering Chemical Blowing Agent Content. Polymers, 2022, 14, 2288.	4.5	3
4	Development and Characterization of Oxidatively Responsive Thiol–Ene Networks for Bone Graft Applications. ACS Applied Bio Materials, 2022, 5, 2633-2642.	4.6	3
5	Theoretical error of sectional method for estimation of shape memory polyurethane foam mass loss. Journal of Colloid and Interface Science, 2022, 625, 237-247.	9.4	1
6	Correlation of light microscopic findings with transmission electron microscopy within a vascular occlusion device. Cardiovascular Pathology, 2021, 50, 107288.	1.6	2
7	Shape memory polymer (SMP) scaffolds with improved self-fitting properties. Journal of Materials Chemistry B, 2021, 9, 3826-3837.	5.8	16
8	In vitro cytocompatibility testing of oxidative degradation products. Journal of Bioactive and Compatible Polymers, 2021, 36, 197-211.	2.1	3
9	Enhanced X-ray Visibility of Shape Memory Polymer Foam Using Iodine Motifs and Tantalum Microparticles. Journal of Composites Science, 2021, 5, 14.	3.0	1
10	Three-dimensional bioprinting of aneurysm-bearing tissue structure for endovascular deployment of embolization coils. Biofabrication, 2021, 13, 015006.	7.1	10
11	Microscopic Assessment of Healing and Effectiveness of a Foam-Based Peripheral Occlusion Device. ACS Biomaterials Science and Engineering, 2020, 6, 2588-2599.	5.2	25
12	Computational study of clot formation in aneurysms treated with shape memory polymer foam. Medical Engineering and Physics, 2020, 75, 65-71.	1.7	3
13	Chemical Modifications of Porous Shape Memory Polymers for Enhanced X-ray and MRI Visibility. Molecules, 2020, 25, 4660.	3.8	2
14	The Distribution and Role of M1 and M2 Macrophages in Aneurysm Healing after Platinum Coil Embolization. American Journal of Neuroradiology, 2020, 41, 1657-1662.	2.4	2
15	Shape Memory Polymer Foams Synthesized Using Glycerol and Hexanetriol for Enhanced Degradation Resistance. Polymers, 2020, 12, 2290.	4.5	10
16	Biodegradable shape memory polymer foams with appropriate thermal properties for hemostatic applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1281-1294.	4.0	32
17	Micro T and histopathology methods to assess host response of aneurysms treated with shape memory polymer foamâ€coated coils versus bare metal coil occlusion devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2238-2249.	3.4	13
18	Shape memory polyurethaneâ€urea foams with improved toughness. Journal of Applied Polymer Science, 2019, 136, 47268.	2.6	11

#	Article	IF	CITATIONS
19	Improved oxidative biostability of porous shape memory polymers by substituting triethanolamine for glycerol. Journal of Applied Polymer Science, 2019, 136, 47857.	2.6	10
20	<i>In vivo</i> comparison of shape memory polymer foamâ€coated and bare metal coils for aneurysm occlusion in the rabbit elastase model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2466-2475.	3.4	32
21	Highly Cross-Linked Shape Memory Polymers with Tunable Oxidative and Hydrolytic Degradation Rates and Selected Products Based on Succinic Acid. ACS Applied Bio Materials, 2019, 2, 454-463.	4.6	12
22	Fabrication and Characterization of Optical Tissue Phantoms Containing Macrostructure. Journal of Visualized Experiments, 2018, , .	0.3	7
23	Multifunctional Shapeâ€Memory Polymer Foams with Bioâ€inspired Antimicrobials. ChemPhysChem, 2018, 19, 1999-2008.	2.1	28
24	Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules, 2018, 51, 9078-9087.	4.8	21
25	Polyurethane Microparticles for Stimuli Response and Reduced Oxidative Degradation in Highly Porous Shape Memory Polymers. ACS Applied Materials & Interfaces, 2018, 10, 32998-33009.	8.0	18
26	A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1821-1838.	2.8	7
27	Comparison of shape memory polymer foam versus bare metal coil treatments in an <i>in vivo</i> porcine sidewall aneurysm model. , 2017, 105, 1892-1905.		48
28	Particulate Release From Nanoparticle-Loaded Shape Memory Polymer Foams. Journal of Medical Devices, Transactions of the ASME, 2017, 11, 0110091-110099.	0.7	5
29	Shape memory polymers with enhanced visibility for magnetic resonance- and X-ray imaging modalities. Acta Biomaterialia, 2017, 54, 45-57.	8.3	17
30	Shape memory polymers with visible and near-infrared imaging modalities: synthesis, characterization and in vitro analysis. RSC Advances, 2017, 7, 19742-19753.	3.6	18
31	Perceptions of transcatheter device closure of patent ductus arteriosus in veterinary cardiology and evaluation of a canine model to simulate device placement: a preliminary study. Journal of Veterinary Cardiology, 2017, 19, 268-275.	0.9	6
32	Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices. Smart Materials and Structures, 2017, 26, 035054.	3.5	27
33	Effects of Sterilization on Shape Memory Polyurethane Embolic Foam Devices. Journal of Medical Devices, Transactions of the ASME, 2017, 11, 0310111-310119.	0.7	8
34	An experimental canine patent ductus arteriosus occlusion device based on shape memory polymer foam in a nitinol cage. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 279-292.	3.1	2
35	In vitro performance of a shape memory polymer foam-coated coil embolization device. Medical Engineering and Physics, 2017, 49, 56-62.	1.7	21
36	Shape memory polyurethanes with oxidation-induced degradation: In vivo and in vitro correlations for endovascular material applications. Acta Biomaterialia, 2017, 59, 33-44.	8.3	47

#	Article	IF	CITATIONS
37	A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomaterialia, 2017, 47, 91-99.	8.3	133
38	Revealing the glass transition in shape memory polymers using Brillouin spectroscopy. Applied Physics Letters, 2017, 111, 241904.	3.3	17
39	Increased X-ray Visualization of Shape Memory Polymer Foams by Chemical Incorporation of Iodine Motifs. Polymers, 2017, 9, 381.	4.5	10
40	Tungsten-loaded SMP foam nanocomposites with inherent radiopacity and tunable thermo-mechanical properties. Polymers for Advanced Technologies, 2016, 27, 195-203.	3.2	30
41	Mechanical and in vitro evaluation of an experimental canine patent ductus arteriosus occlusion device. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 156-167.	3.1	9
42	Porous shape memory polymers: Design and applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1300-1318.	2.1	65
43	Rapidly-cured isosorbide-based cross-linked polycarbonate elastomers. Polymer Chemistry, 2016, 7, 2639-2644.	3.9	31
44	Cold Plasma Reticulation of Shape Memory Embolic Tissue Scaffolds. Macromolecular Rapid Communications, 2016, 37, 1945-1951.	3.9	11
45	Development of siloxane-based amphiphiles as cell stabilizers for porous shape memory polymer systems. Journal of Colloid and Interface Science, 2016, 478, 334-343.	9.4	10
46	<i>In vitro</i> and <i>in vivo</i> evaluation of a shape memory polymer foamâ€overâ€wire embolization device delivered in saccular aneurysm models. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1407-1415.	3.4	47
47	Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol. Smart Materials and Structures, 2016, 25, 075014.	3.5	29
48	Design and verification of a shape memory polymer peripheral occlusion device. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 195-206.	3.1	49
49	Embolic applications of shape memory polyurethane scaffolds. , 2016, , 561-597.		5
50	Modification of shape memory polymer foams using tungsten, aluminum oxide, and silicon dioxide nanoparticles. RSC Advances, 2016, 6, 918-927.	3.6	17
51	Characterization of plasma deposited hydrocarbon diffusion barriers for embolic foam devices. , 2015, , .		Ο
52	Design and biocompatibility of endovascular aneurysm filling devices. Journal of Biomedical Materials Research - Part A, 2015, 103, 1577-1594.	4.0	23
53	Examination of radioâ€opacity enhancing additives in shape memory polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
54	A Processable Shape Memory Polymer System for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 1386-1398.	7.6	66

#	Article	IF	CITATIONS
55	A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nature Materials, 2015, 14, 1065-1071.	27.5	268
56	Silicone membranes to inhibit water uptake into thermoset polyurethane shapeâ€nemory polymer conductive composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
57	Effects of Isophorone Diisocyanate on the Thermal and Mechanical Properties of Shapeâ€Memory Polyurethane Foams. Macromolecular Chemistry and Physics, 2014, 215, 2420-2429.	2.2	31
58	Design and Characterization of an Endovascular Mechanical Thrombectomy Device1. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.7	1
59	<i>In vivo</i> response to an implanted shape memory polyurethane foam in a porcine aneurysm model. Journal of Biomedical Materials Research - Part A, 2014, 102, 1231-1242.	4.0	110
60	Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device. Smart Materials Research, 2014, 2014, 1-12.	0.5	5
61	Injectable polyMIPE scaffolds for soft tissue regeneration. Polymer, 2014, 55, 426-434.	3.8	31
62	Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia, 2014, 10, 67-76.	8.3	155
63	Recycling: A Highâ€Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from <scp>d</scp> ‣imonene (Adv. Mater. 10/2014). Advanced Materials, 2014, 26, 1551-1551.	21.0	1
64	Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 102-114.	3.1	38
65	A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems. Macromolecules, 2013, 46, 8905-8916.	4.8	17
66	Porous media properties of reticulated shape memory polymer foams and mock embolic coils for aneurysm treatment. BioMedical Engineering OnLine, 2013, 12, 103.	2.7	18
67	The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers. Radiation Physics and Chemistry, 2013, 83, 111-121.	2.8	28
68	Porous Shape-Memory Polymers. Polymer Reviews, 2013, 53, 41-75.	10.9	84
69	Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam. Annals of Biomedical Engineering, 2013, 41, 725-743.	2.5	32
70	Controlling the Actuation Rate of Lowâ€Density Shapeâ€Memory Polymer Foams in Water. Macromolecular Chemistry and Physics, 2013, 214, 1204-1214.	2.2	46
71	Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties. Macromolecular Chemistry and Physics, 2013, 214, 1258-1272.	2.2	25
72	In Vitro Study of Transcatheter Delivery of a Shape Memory Polymer Foam Embolic Device for Treating Cerebral Aneurysms. Journal of Medical Devices, Transactions of the ASME, 2013, 7, .	0.7	15

#	Article	IF	CITATIONS
73	Threeâ€Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. Macromolecular Materials and Engineering, 2012, 297, 1193-1202.	3.6	120
74	Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 724-737.	2.1	114
75	Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device. Biomechanics and Modeling in Mechanobiology, 2012, 11, 715-729.	2.8	22
76	Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms. Annals of Biomedical Engineering, 2012, 40, 883-897.	2.5	91
77	Postâ€polymerization crosslinked polyurethane shape memory polymers. Journal of Applied Polymer Science, 2011, 121, 144-153.	2.6	60
78	The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Materials and Structures, 2011, 20, 085010.	3.5	78
79	Controlling the Physical Properties of Random Network Based Shape Memory Polymer Foams. Materials Research Society Symposia Proceedings, 2010, 1274, 1.	0.1	4
80	Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 2010, 20, 3356.	6.7	395
81	Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 421-429.	3.4	35
82	Design and Realization of Biomedical Devices Based on Shape Memory Polymers. Materials Research Society Symposia Proceedings, 2009, 1190, 100.	0.1	2
83	Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device. BioMedical Engineering OnLine, 2009, 8, 42.	2.7	13
84	Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. Journal of Biomedical Optics, 2007, 12, 030504.	2.6	94
85	Shape Memory Polymer Stent With Expandable Foam: A New Concept for Endovascular Embolization of Fusiform Aneurysms. IEEE Transactions on Biomedical Engineering, 2007, 54, 1157-1160.	4.2	111
86	Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. BioMedical Engineering OnLine, 2007, 6, 43.	2.7	116
87	Shape-memory behavior of thermally stimulated polyurethane for medical applications. Journal of Applied Polymer Science, 2007, 103, 3882-3892.	2.6	145
88	Shape memory polymers based on uniform aliphatic urethane networks. Journal of Applied Polymer Science, 2007, 106, 540-551.	2.6	92
89	A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress Within Arteriovenous Grafts. IEEE Transactions on Biomedical Engineering, 2007, 54, 1722-1724.	4.2	60
90	Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices. IEEE Transactions on Biomedical Engineering, 2006, 53, 2075-2083.	4.2	313

#	Article	IF	CITATIONS
91	Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 892-901.	2.9	72
92	Shape memory polymer therapeutic devices for stroke. , 2005, , .		13
93	Laser-activated shape memory polymer intravascular thrombectomy device. Optics Express, 2005, 13, 8204.	3.4	236
94	Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers in Surgery and Medicine, 2002, 30, 1-11.	2.1	282
95	Mechanical Properties of Mechanical Actuator for Treating Ischemic Stroke. Biomedical Microdevices, 2002, 4, 89-96.	2.8	135