

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575703/publications.pdf Version: 2024-02-01

ΥλΝ ΜΙ

#	Article	IF	CITATIONS
1	High-Frequency Bipolar Solid-State LTD Based on a Self-Triggering H-Bridge. IEEE Transactions on Power Electronics, 2022, 37, 5898-5907.	7.9	5
2	Effect of the mechanical properties of the cell membrane on the transition energy barrier of electroporation. Journal of Applied Physics, 2022, 131, 084701.	2.5	5
3	Simulation of BNNSs Dielectrophoretic Motion under a Nanosecond Pulsed Electric Field. Nanomaterials, 2021, 11, 682.	4.1	4
4	Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. Journal of Ethnopharmacology, 2021, 269, 113718.	4.1	17
5	Viability inhibition of A375 melanoma cells in vitro by a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. Nanotechnology, 2021, 32, 385101.	2.6	3
6	Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry, 2021, 140, 107822.	4.6	11
7	Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. Phytomedicine, 2020, 79, 153353.	5.3	23
8	Picosecond Pulse Electrical Field Suppressing Spike Firing in Hippocampal CA1 in Rat In Vivo. Bioelectromagnetics, 2020, 41, 617-629.	1.6	1
9	Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation. Food and Function, 2020, 11, 5432-5445.	4.6	22
10	Partial discharge characteristics of an air gap defect in the epoxy resin of a saturable reactor under an exponential decay pulse voltage. High Voltage, 2020, 5, 482-488.	4.7	7
11	Multi-Parametric Study of the Viability of <i>in Vitro</i> Skin Cancer Cells Exposed to Nanosecond Pulsed Electric Fields Combined With Multi-Walled Carbon Nanotubes. Technology in Cancer Research and Treatment, 2019, 18, 153303381987691.	1.9	6
12	Enhanced Breakdown Strength and Thermal Conductivity of BN/EP Nanocomposites with Bipolar Nanosecond Pulse DBD Plasma Modified BNNSs. Nanomaterials, 2019, 9, 1396.	4.1	16
13	Electroporation modeling of a single cell exposed to high-frequency nanosecond pulse bursts. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 461-468.	2.9	24
14	Design and Experiments of Electromagnetic Heating Forming Technology. IEEE Access, 2019, 7, 62646-62656.	4.2	8
15	An MMC-based modular unipolar/bipolar high-voltage nanosecond pulse generator with adjustable rise/fall time. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 515-522.	2.9	20
16	Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production. Bioelectrochemistry, 2019, 127, 171-179.	4.6	7
17	Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields. BioMed Research International, 2019, 2019, 1-10.	1.9	1
18	Effect of frequency of microsecond pulsed electric field on orientation of boron nitride nanosheets and thermal conductivity of epoxy resin-based composites. Journal of Applied Physics, 2019, 126, .	2.5	19

Yan Mi

#	Article	IF	CITATIONS
19	Comparison of the PD characteristics of epoxy resin under exponential decay pulse and sinusoidal voltages. IET Science, Measurement and Technology, 2019, 13, 1311-1317.	1.6	4
20	Multiparametric Finite-Element Simulation and Experiment on Thermal Effects in Skin Tumor Exposed to High-Frequency Nanosecond Pulse Bursts. IEEE Transactions on Plasma Science, 2019, 47, 924-934.	1.3	4
21	Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research. IEEE Transactions on Biomedical Engineering, 2019, 66, 1353-1360.	4.2	12
22	A Modular Generator of Nanosecond Pulses With Adjustable Polarity and High Repetition Rate. IEEE Transactions on Power Electronics, 2018, 33, 10654-10662.	7.9	19
23	Effect of Low-Field High-Frequency nsPEFs on the Biological Behaviors of Human A375 Melanoma Cells. IEEE Transactions on Biomedical Engineering, 2018, 65, 2093-2100.	4.2	15
24	Scaling Relationship of <i>In Vivo</i> Muscle Contraction Strength of Rabbits Exposed to High-Frequency Nanosecond Pulse Bursts. Technology in Cancer Research and Treatment, 2018, 17, 153303381878807.	1.9	16
25	A high-repetition-rate bipolar nanosecond pulse generator for dielectric barrier discharge based on a magnetic pulse compression system. IEEE Transactions on Plasma Science, 2018, 46, 2582-2590.	1.3	14
26	Cell electrofusion based on nanosecond/microsecond pulsed electric fields. PLoS ONE, 2018, 13, e0197167.	2.5	8
27	Simulation Study of an Impulse Radiation Antenna Array. IEEE Transactions on Plasma Science, 2018, 46, 2965-2971.	1.3	2
28	Design and Development of a Compact All-Solid-State High-Frequency Picosecond-Pulse Generator. IEEE Transactions on Plasma Science, 2018, 46, 3249-3256.	1.3	16
29	Analysis of Dynamic Processes in Single-Cell Electroporation and Their Effects on Parameter Selection Based on the Finite-Element Model. IEEE Transactions on Plasma Science, 2017, 45, 889-900.	1.3	31
30	Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation. Medical and Biological Engineering and Computing, 2017, 55, 1109-1122.	2.8	24
31	Comparative Study of the Biological Responses to Conventional Pulse and High-Frequency Monopolar Pulse Bursts. IEEE Transactions on Plasma Science, 2017, 45, 2629-2638.	1.3	5
32	Compact solid-state Marx-bank sub-nanosecond pulse generator based on gradient transmission line theory. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2181-2188.	2.9	7
33	A modular solid-state nanosecond pulsed generator based on Blumlein-line and transmission line transformer with microstrip line. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2196-2202.	2.9	13
34	Electroporation simulation of a multicellular system exposed to high-frequency 500 ns pulsed electric fields. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 3985-3994.	2.9	11
35	A Novel Configuration of Modular Bipolar Pulse Generator Topology Based on Marx Generator With Double Power Charging. IEEE Transactions on Plasma Science, 2016, 44, 1872-1878.	1.3	39
36	Development of High <inline-formula> <tex-math notation="LaTeX">\$dB/dt\$ </tex-math> </inline-formula> Pulsed Magnetic Field Generator Based on Printed Circuit Board Archimedes Spiral Coil for Biomedical Applications. IEEE Transactions on Plasma Science, 2016, 44, 1879-1887.	1.3	4

Yan Mi

#	Article	IF	CITATIONS
37	Nanosecond Pulse Generator Based on an Unbalanced Blumlein-Type Multilayered Microstrip Transmission Line and Solid-State Switches. IEEE Transactions on Plasma Science, 2016, 44, 795-802.	1.3	13
38	Guest Editorial Special Issue on Pulsed Power Science and Technology. IEEE Transactions on Plasma Science, 2016, 44, 1863-1863.	1.3	0
39	High-frequency composite pulse generator based on full-bridge inverter and soft switching for biological applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 2730-2737.	2.9	12
40	A Multiparameter Adjustable, Portable High-Voltage Nanosecond Pulse Generator Based on Stacked Blumlein Multilayered PCB Strip Transmission Line. IEEE Transactions on Plasma Science, 2016, 44, 2022-2029.	1.3	15
41	Development and Simulation of a Compact Picosecond Pulse Generator Based on Avalanche Transistorized Marx Circuit and Microstrip Transmission Theory. IEEE Transactions on Plasma Science, 2016, 44, 1907-1913.	1.3	18
42	Identification of direct lightning strike faults based on mahalanobis distance and S-transform. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 2019-2030.	2.9	13
43	A novel method to locate a fault of transmission lines by shielding failure. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1573-1583.	2.9	13
44	Finite difference time domain simulation of lightning transient electromagnetic fields on transmission lines. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 1239-1246.	2.9	24
45	A novel lightning current monitoring system based on the differential-integral loop. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 1247-1255.	2.9	16
46	Dependence on pulse duration and number of tumor cell apoptosis by nanosecond pulsed electric fields. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 1195-1200.	2.9	7
47	Development of a focusing pulsed magnetic field system for in Vivo experiments. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 1327-1333.	2.9	3
48	FPGA-Controlled All-Solid-State Nanosecond Pulse Generator for Biological Applications. IEEE Transactions on Plasma Science, 2012, 40, 2366-2372.	1.3	40
49	Contactless measurement of lightning current using self-integrating B-dot probe. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 1323-1327.	2.9	12
50	Experimental studies on effects of sub-lethal dose of pulsed electric field on Hela cells. , 2010, , .		0
51	A Novel Power Supply of Online Monitoring Systems for Power Transmission Lines. IEEE Transactions on Industrial Electronics, 2010, 57, 2889-2895.	7.9	59
52	Apoptosis induction effects of steep pulsed electric fields (SPEF) on human liver cancer cell SMMC-7721 in vitro. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 1302-1310.	2.9	8
53	Effects of Steep Pulsed Electric Fields (SPEF) on Mitochondrial Transmembrane Potential of Human Liver Cancer Cell. , 2007, 2007, 5815-8.		7
54	Experimental Studies on Killing and Inhibiting Effects of Steep Pulsed Electric Field (SPEF) to Target Cancer Cell and Solid Tumor. IEEE Transactions on Plasma Science, 2004, 32, 1626-1633.	1.3	51