Anatoliy Shmygol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium-induced calcium release in neurones. Cell Calcium, 1996, 19, 1-14.	1.1	275
2	Uterine Selection of Human Embryos at Implantation. Scientific Reports, 2014, 4, 3894.	1.6	232
3	Calcium signaling and uterine contractility. Journal of the Society for Gynecologic Investigation, 2003, 10, 252-264.	1.9	166
4	Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience, 1993, 57, 845-859.	1.1	154
5	Vimentin-Positive, c-KIT-Negative Interstitial Cells in Human and Rat Uterus: A Role in Pacemaking?1. Biology of Reproduction, 2005, 72, 276-283.	1.2	130
6	The Physiological Basis of Uterine Contractility: A Short Review. Experimental Physiology, 2001, 86, 239-246.	0.9	110
7	Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. Journal of Physiology, 2007, 581, 445-456.	1.3	90
8	Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurones. Pflugers Archiv European Journal of Physiology, 1994, 426, 174-176.	1.3	82
9	Dual action of thapsigargin on calcium mobilization in sensory neurons: Inhibition of Ca2+ uptake by caffeine-sensitive pools and blockade of plasmalemmal Ca2+ channels. Neuroscience, 1995, 65, 1109-1118.	1.1	69
10	Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility. Acta Pharmacologica Sinica, 2006, 27, 827-832.	2.8	68
11	Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response. Antioxidants and Redox Signaling, 2015, 23, 613-629.	2.5	63
12	Role of caffeine-sensitive Ca2+ stores in Ca2+ signal termination in adult mouse DRG neurones. NeuroReport, 1994, 5, 2073-2076.	0.6	62
13	Calcium signal prolongation in sensory neurones of mice with experimental diabetes. NeuroReport, 1995, 6, 1010-1012.	0.6	61
14	Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia, 2001, 44, 1302-1309.	2.9	60
15	ATP induces Ca2+ release from IP3-sensitive Ca2+ stores exclusively in large DRG neurones. NeuroReport, 1997, 8, 1555-1559.	0.6	59
16	The inwardly rectifying K ⁺ channel <scp>KIR</scp> 7.1 controls uterine excitability throughout pregnancy. EMBO Molecular Medicine, 2014, 6, 1161-1174.	3.3	59
17	Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Archiv European Journal of Physiology, 2004, 448, 36-43.	1.3	57
18	Gradual caffeine-induced Ca2+ release in mouse dorsal root ganglion neurons is controlled by cytoplasmic and luminal Ca2+. Neuroscience, 1996, 73, 1061-1067.	1.1	52

ANATOLIY SHMYGOL

#	Article	IF	CITATIONS
19	Ca2+ entry, efflux and release in smooth muscle. Biological Research, 2004, 37, 617-24.	1.5	51
20	Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. Journal of Physiology, 2007, 581, 915-926.	1.3	49
21	Regulation of Oxytocin Receptors and Oxytocin Receptor Signaling. Seminars in Reproductive Medicine, 2007, 25, 052-059.	0.5	47
22	A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium, 2003, 34, 27-33.	1.1	46
23	Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes. Cell Calcium, 2005, 37, 215-223.	1.1	46
24	Control of Uterine Ca2+ by Membrane Voltage: Toward Understanding the Excitation-Contraction Coupling in Human Myometrium. Annals of the New York Academy of Sciences, 2007, 1101, 97-109.	1.8	44
25	Elevated Periimplantation Uterine Natural Killer Cell Density in Human Endometrium Is Associated With Impaired Corticosteroid Signaling in Decidualizing Stromal Cells. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4429-4437.	1.8	43
26	Carboxyeosin decreases the rate of decay of the [Ca 2+] i transient in uterine smooth muscle cells isolated from pregnant rats. Pflugers Archiv European Journal of Physiology, 1998, 437, 158-160.	1.3	37
27	Functional architecture of the SR calcium store in uterine smooth muscle. Cell Calcium, 2004, 35, 501-508.	1.1	35
28	Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells. Endocrinology, 2016, 157, 2883-2893.	1.4	31
29	The effects of pH change on Ca++ signaling and force in pregnant human myometrium. American Journal of Obstetrics and Gynecology, 2003, 188, 1031-1038.	0.7	30
30	Towards a computational reconstruction of the electrodynamics of premature and full term human labour. Progress in Biophysics and Molecular Biology, 2011, 107, 183-192.	1.4	29
31	Changes of pH affect calcium currents but not outward potassium currents in rat myometrial cells. Pflugers Archiv European Journal of Physiology, 1995, 431, 135-137.	1.3	28
32	InsP3-induced Ca2+ release in dorsal root ganglion neurones. Neuroscience Letters, 1997, 227, 107-110.	1.0	28
33	Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium. Cell Calcium, 2010, 47, 47-54.	1.1	26
34	Role of the calcium store in uterine contractility. Seminars in Cell and Developmental Biology, 2007, 18, 315-320.	2.3	23
35	Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat. Clinical Science, 2016, 130, 183-192.	1.8	22
36	Myometrial function in prematurity. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2007, 21, 807-819.	1.4	21

ANATOLIY SHMYGOL

#	Article	IF	CITATIONS
37	A fluorogenic assay for methylglyoxal. Biochemical Society Transactions, 2014, 42, 548-555.	1.6	21
38	Characterization of the tissueâ€level <scp><a< scp=""></a<></scp> ²⁺ signals in spontaneously contracting human myometrium. Journal of Cellular and Molecular Medicine, 2012, 16, 2990-3000.	1.6	19
39	Spatial heterogeneity enhances and modulates excitability in a mathematical model of the myometrium. Journal of the Royal Society Interface, 2013, 10, 20130458.	1.5	16
40	Evidence that a Ca2+ sparks/STOCs coupling mechanism is responsible for the inhibitory effect of caffeine on electro-mechanical coupling in guinea pig ureteric smooth muscle. Cell Calcium, 2007, 42, 303-311.	1.1	15
41	Phase-plot analysis of the oxytocin effect on human myometrial contractility. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2009, 144, S20-S24.	0.5	14
42	Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle. Physiological Reports, 2016, 4, e13034.	0.7	14
43	The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG: an International Journal of Obstetrics and Gynaecology, 2003, 110, 1050-1056.	1.1	13
44	Alterations in gap junction connexin43/connexin45 ratio mediate a transition from quiescence to excitation in a mathematical model of the myometrium. Journal of the Royal Society Interface, 2014, 11, 20140726.	1.5	12
45	Calcium Signaling in the Ventricular Myocardium of the Goto-Kakizaki Type 2 Diabetic Rat. Journal of Diabetes Research, 2018, 2018, 1-15.	1.0	7
46	A computational model of excitation and contraction in uterine myocytes from the pregnant rat. Scientific Reports, 2018, 8, 9159.	1.6	7
47	Oxytocin induces intracellular Ca2+ release in cardiac fibroblasts from neonatal rats. Cell Calcium, 2019, 84, 102099.	1.1	7
48	Single-cell mechanics and calcium signalling in organotypic slices of human myometrium. Journal of Biomechanics, 2015, 48, 1620-1624.	0.9	5
49	Maternal obesity-induced decreases in plasma, hepatic and uterine polyunsaturated fatty acids during labour is reversed through improved nutrition at conception. Scientific Reports, 2018, 8, 3389.	1.6	5
50	Calcium signaling in endocardial and epicardial ventricular myocytes from streptozotocinâ€induced diabetic rats. Journal of Diabetes Investigation, 2021, 12, 493-500.	1.1	5
51	Proteinase Activated Receptors Mediate the Trypsin-Induced Ca2 + Signaling in Human Uterine Epithelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 709902.	1.8	5
52	Cell shortening and calcium dynamics in epicardial and endocardial myocytes from the left ventricle of Gotoâ€Kakizaki type 2 diabetic rats. Experimental Physiology, 2018, 103, 502-511.	0.9	4
53	Fine spatiotemporal activity in contracting myometrium revealed by motion orrected calcium imaging. Journal of Physiology, 2014, 592, 4447-4463.	1.3	3
54	Functional and Morphological Development of the Womb Throughout Life. Science Progress, 2015, 98, 103-127.	1.0	3

ANATOLIY SHMYGOL

#	Article	IF	CITATIONS
55	Voltage dependence of the Ca2+ transient in endocardial and epicardial myocytes from the left ventricle of Goto–Kakizaki type 2 diabetic rats. Molecular and Cellular Biochemistry, 2018, 446, 25-33.	1.4	3
56	Effects of prolactin on ventricular myocyte shortening and calcium transport in the streptozotocin-induced diabetic rat. Heliyon, 2020, 6, e03797.	1.4	3
57	The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG: an International Journal of Obstetrics and Gynaecology, 2003, 110, 1050-6.	1.1	3
58	Epstein-Barr virus noncoding small RNA (EBER1) induces cell proliferation by up-regulating cellular mitochondrial activity and calcium influx. Virus Research, 2021, 305, 198550.	1.1	2
59	Ultra-thin tissue slices—a new approach to study Ca signalling in human myometrium. Journal of Biomechanics, 2006, 39, S341-S342.	0.9	1
60	Calcium-induced calcium release in astroglia—a view "from the inside― Pflugers Archiv European Journal of Physiology, 2020, 472, 435-436.	1.3	1
61	Antioxidant response element cytoprotective response in aortic endothelial cells coordinated by transcription factor Nrf2 is regulated through frequency-modulated translocational oscillations. Atherosclerosis, 2015, 241, e2.	0.4	0
62	Pacing made easy: dynamic clamp promotes quantitative understanding of cardiac autorhythmicity and boosts the development of new pacemakers. Pflugers Archiv European Journal of Physiology, 2020, 472, 549-550.	1.3	0
63	The Effect of on Intracellular Ca2+ Release in Cardiac Cells. Methods in Molecular Biology, 2022, 2384, 43-52.	0.4	0
64	Beyond Nernst: the effects of extracellular potassium on post-tetanic twitch potentiation in skeletal muscle. Pflugers Archiv European Journal of Physiology, 2022, 474, 573-574.	1.3	0