Alex Zakhidov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575521/publications.pdf

Version: 2024-02-01

		758635	839053	
19	725	12	18	
papers	citations	h-index	g-index	
20	20	20	1566	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano, 2016, 10, 10921-10928.	7.3	168
2	Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS ₂ Flake-Based NO ₂ Sensor Working at Room Temperature. ACS Sensors, 2018, 3, 998-1004.	4.0	149
3	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	2.1	110
4	Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Applied Physics Letters, 2017, 111, .	1.5	53
5	Controlled Growth of MoS ₂ Flakes from in-Plane to Edge-Enriched 3D Network and Their Surface-Energy Studies. ACS Applied Nano Materials, 2018, 1, 2356-2367.	2.4	44
6	Highâ€resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600302.	0.8	40
7	Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. Communications Physics, $2018,1,.$	2.0	32
8	Density functional theory + U modeling of polarons in organohalide lead perovskites. AIP Advances, $2016, 6, .$	0.6	25
9	Integration of BiFeO ₃ /La _{0.7} Sr _{0.3} MnO ₃ heterostructures with Ill–V semiconductors for low-power non-volatile memory and multiferroic field effect transistors. Journal of Materials Chemistry C, 2016, 4, 10386-10394.	2.7	18
10	Tailoring nucleation and grain growth by changing the precursor phase ratio for efficient organic lead halide perovskite optoelectronic devices. Journal of Materials Chemistry C, 2017, 5, 10114-10121.	2.7	18
11	Improvements of Organic Lightâ€Emitting Diodes Using Graphene as an Emerging and Efficient Transparent Conducting Electrode Material. Advanced Optical Materials, 2021, 9, 2002102.	3.6	17
12	Thickness measurement of multilayer film stack in perovskite solar cell using spectroscopic ellipsometry. AIP Advances, 2019, 9, .	0.6	15
13	Solvent Toolkit for Electrochemical Characterization of Hybrid Perovskite Films. Analytical Chemistry, 2017, 89, 9649-9653.	3.2	14
14	Determining the refractive index and the dielectric constant of PPDT2FBT thin film using spectroscopic ellipsometry. Optical Materials, 2020, 110, 110445.	1.7	10
15	A density functional theory study on the interface stability between CsPbBr3 and Cul. AIP Advances, 2020, 10, .	0.6	4
16	Temperature―and Biasâ€Dependent Degradation and Regeneration of Perovskite Solar Cells with Organic and Inorganic Hole Transport Layers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000721.	0.8	3
17	Predicting hybrid perovskite performance based on secondary cation choice. Solar Energy, 2022, 241, 686-692.	2.9	3
18	Ambient Processing Conditions and Their Effects on Perovskite Device Performance. Crystal Research and Technology, 2022, 57, .	0.6	2

ARTICLE IF CITATIONS

19 Accurate and Fast Thickness Measurement Technique of MAPbl3 Thin Film., 2019,,... o