
Igor Avetissov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Step Synthesis of High Pure Tris(8-hydroxyquinoline)aluminum for Optics and Photonics. Materials, 2022, 15, 734.	1.3	4
2	NIR-OLED structures based on lanthanide coordination compounds: synthesis and luminescent properties. Journal of Materials Science, 2022, 57, 8393-8405.	1.7	3
3	Growth of BPO ₄ Crystals in Low Temperature Gradients. Crystal Research and Technology, 2022, 57, .	0.6	0
4	Luminescent properties of organic–inorganic hybrid films fabricated by capillary coating technique. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	8
5	Synthesis of high pure crystalline paratellurite by chemical combustion reaction. Journal of Alloys and Compounds, 2021, 855, 157510.	2.8	1
6	Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043.	1.9	12
7	Separating \$\${^{39}hbox {Ar}}\$\$ from \$\${^{40}hbox {Ar}}\$\$ by cryogenic distillation with Aria for dark-matter searches. European Physical Journal C, 2021, 81, 1.	1.4	12
8	High Purity Tungsten (VI) Oxide for Obtaining Promising Laser Materials. Glass and Ceramics (English) Tj ETQq0 0	0 ₀ .gBT /O	verlock 10 T
9	Hybrid Ultra-Low-Radioactive Material for Protecting Dark Matter Detector from Background Neutrons. Materials, 2021, 14, 3757.	1.3	0
10	Gadolinium-Based Hybrid Ultra-Low-Background Material for Protecting the Darkside20k Dark Matter Detector from Background Neutrons. Glass and Ceramics (English Translation of Steklo I Keramika), 2021, 78, 91-96.	0.2	0
11	Infrared Luminescent Hybrid Materials Based on Inorganic Glass Matrices. Glass and Ceramics (English) Tj ETQq1	1 8:28431	4 ₁ gBT /Ove

12	New efficient lighting device. Part 1. hybrid materials based on inorganic aerogel and metal-organic phosphor. Journal of Solid State Chemistry, 2021, 302, 122358.	1.4	4
13	Luminescent properties of solid solutions in the PbF2-EuF3 and PbF2–ErF3 systems. Journal of Luminescence, 2021, 238, 118262.	1.5	1
14	Effect of high purity molybdenum oxide(<scp>vi</scp>) on crystal growth and OLED technology. CrystEngComm, 2021, 23, 8276-8290.	1.3	3
15	id="d1e373" altimg="si7.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> WO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e381" altimg="si8.svg"><mml:msub><mml:mrow< td=""><td>0.7</td><td>16</td></mml:mrow<></mml:msub></mml:math 	0.7	16
16	/> cmml:mrow> cmml:mn>4c/mml:mn> c/mml:mrow> c/mml:msub> c/mml:math> (Mo) bolometric detector Nd/La, Nd/Lu-co-doped transparent lead fluoroborate glass-ceramics. Journal of Non-Crystalline Solids, 2020, 531, 119858.	1.5	6
17	Extra pure tellurium oxide for the growth of high quality paratellurite crystals. IOP Conference Series: Materials Science and Engineering, 2019, 613, 012021.	0.3	1

18Crystal growth and luminescent properties of LiNa5Mo9O30. Journal of Crystal Growth, 2019, 519,
35-40.0.76

#	Article	IF	CITATIONS
19	Optical Properties Transformation under Laser Treatment of Hybrid Organic–Inorganic Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800647.	0.8	1
20	Organo-Inorganic Luminescent Hybrid Materials Based on Lead Fluoride and Organic Phosphors. , 2019, , .		1
21	Effect of the Accidental Impurities onto the Absorption Spectrum of NaGd(WO4)2 Laser Crystal. , 2019, , .		1
22	Effect of Uncontrollable Impurities on the Absorption Spectrum of a NaGd(WO4)2 Laser Crystal. Physics of the Solid State, 2019, 61, 2407-2411.	0.2	0
23	A novel candle light-style OLED with a record low colour temperature. Chemical Communications, 2019, 55, 13354-13357.	2.2	22
24	Luminescent hybrid materials based on metal-organic phosphors in PbF2 powder and PbF2-containing glass matrix. Optical Materials, 2019, 88, 378-384.	1.7	6
25	Fundamentals of organometallic electrophosphors synthesis under controlled temperature and ligand partial pressure. Dyes and Pigments, 2019, 161, 482-488.	2.0	1
26	The effect of borate glass matrix on the luminescence properties of organic–inorganic hybrid materials. Journal of Commonwealth Law and Legal Education, 2019, 60, 140-145.	0.2	2
27	New Pt(II) complex with extra pure green emission for OLED application: synthesis, crystal structure and spectral properties. Journal of Organometallic Chemistry, 2018, 867, 253-260.	0.8	16
28	To the homogeneity range of tris(8-hydroxyquinoline)gallium. CrystEngComm, 2018, 20, 930-936.	1.3	2
29	Luminescent Glassâ€Ceramics Based on Nanoparticles of Ba _x RE _{1â€x} F _{2+x} and Pb _x RE _{1â€x} F _{2+x} Solid Solutions into Fluoroborate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700446.	0.8	3
30	Hot-pressed production and laser properties of ZnSe:Fe 2+. Journal of Crystal Growth, 2018, 491, 36-41.	0.7	24
31	Investigations of Nanoscale Defects in Crystalline and Powder ZnSe Doped With Fe for Laser Application. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700457.	0.8	5
32	Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations. Journal of Crystal Growth, 2018, 483, 31-38.	0.7	1
33	Mechanical and optical properties of hybrid materials based on inorganic glass matrix and organic metal complex phosphors. Journal of Physics: Conference Series, 2018, 1045, 012006.	0.3	2
34	Application of tris-(8-hydroxyquinoline) aluminium (III) with controlled defect structure in OLED. , 2018, , .		0
35	Effect of inorganic matrix composition on luminescent properties of hybrid materials. , 2018, , .		0
36	The doping and heat-treatment influence on spectral properties of Bi-Ge-O glasses. , 2018, , .		2

3

#	Article	IF	CITATIONS
37	Pt (II)-based complexes with ligands of 8-hydroxyquinoline and its 2-methyl derivative for OLED. , 2018, ,		Ο
38	The Homogeneity Range of Crystalline Tris(8-hydroxyquinoline)gallium. Doklady Chemistry, 2018, 480, 85-88.	0.2	0
39	Li2MoO4 crystal growth from solution activated by low-frequency vibrations. Journal of Crystal Growth, 2017, 457, 151-157.	0.7	7
40	Nonstoichiometry and luminescent properties of ZnSe crystals grown from the melt at high pressures. Journal of Crystal Growth, 2017, 457, 331-336.	0.7	5
41	Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses. Optical Materials, 2017, 69, 141-147.	1.7	15
42	Optical properties transformations under heat and laser treatment of glasses in the Bi–Ge–O system. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	0
43	Luminescent Stability of Hybrids Based on Different Borate Glass Matrix's and Organic Metal Complexes. IOP Conference Series: Materials Science and Engineering, 2017, 225, 012083.	0.3	4
44	The influence of synthesis conditions on the stability of tris(8-hydroxyquinoline) aluminum organometallic luminophore. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Ove	rloc lo.1 20 Tf	50 1 457 Td (S
45	Numerical simulation and growth of Li2Zn2(MoO4)3 single crystals by the top seeded solution growth technique. Journal of Crystal Growth, 2017, 468, 939-944.	0.7	1
46	Growth of high optical quality zinc chalcogenides single crystals doped by Fe and Cr by the solid phase recrystallization technique at barothermal treatment. Journal of Crystal Growth, 2017, 468, 655-661.	0.7	19
47	Solid solution Li2MoO4 – Li2WO4 crystal growth and characterization. Journal of Crystal Growth, 2017, 468, 365-368.	0.7	24
48	Deep Tellurium Purification for the Production of Electronic and Photonic Materials. Russian Microelectronics, 2017, 46, 551-556.	0.1	6
49	New Fluorescent Hybrid Materials Based on Eu-Complexes in Oxyfluoride Glass and Glass-Ceramic Matrix. Periodica Polytechnica: Chemical Engineering, 2016, 60, 152-156.	0.5	4
50	Selenium solubility in solid zinc selenide. Inorganic Materials, 2016, 52, 643-649.	0.2	0
51	Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. Journal of Luminescence, 2016, 177, 31-39.	1.5	65
52	Novel hybrid materials based on various oxyquinoline organic phosphour complexes and oxyfluoride glass. , 2016, , .		0
53	Synthesis condition influence on stability of metal-organic phosphor based on 8-hydroxyquinoline. , 2016, , .		0
54	Purity of MoO3 from different manufacturers. Inorganic Materials, 2016, 52, 285-293.	0.2	4

#	Article	IF	CITATIONS
55	Efficient red organic light-emitting diode based on simple Pt(II) OˆN- complex. Dyes and Pigments, 2016, 135, 80-85.	2.0	3
56	Non-stoichiometry of tris(8-hydroxyquinoline) aluminium: is it possible?. CrystEngComm, 2016, 18, 2182-2188.	1.3	13
57	Growth of Li2MoO4 Crystals from Activated Water Solutions. Glass and Ceramics (English) Tj ETQq1 1 0.78431	4 rgBT /O\ 0.2	verlack 10 Ti 5
58	Nonstoichiometry problems of ZnSe: From single crystals to nanofilms. Thin Solid Films, 2016, 613, 11-18.	0.8	4
59	Deep tellurium purification for electronic and photonic materials. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2016, 19, 235-240.	0.1	2
60	Study of the Kroll-process to produce ultra-pure Ti for the low background experiments. AIP Conference Proceedings, 2015, , .	0.3	1
61	Combined method of axial low-frequency vibrations and axial heat flux for crystal growth from a melt. Doklady Physics, 2015, 60, 118-121.	0.2	2
62	Laser-induced luminescence in hybrid nanofilms. Optics and Spectroscopy (English Translation of) Tj ETQq0 0 0	rgBT /Ove 0.2	rlock 10 Tf 50
63	Axial vibration control of melt structure of sodium nitrate in crystal growth process. Journal of Crystal Growth, 2015, 417, 16-24.	0.7	6
64	Homogeneity limits and nonstoichiometry of vapor grown ZnTe and CdTe crystals. CrystEngComm, 2015, 17, 561-568.	1.3	11
65	Spectral properties of powder preparations of cadmium telluride and cadmium selenide with controlled nonstoichiometry. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784314 rg	BT (Q2 verlo	ock d 0 Tf 50 3
66	Luminescent hybrid materials based on an europium organic complex and borate glasses. Journal of Non-Crystalline Solids, 2015, 429, 213-218.	1.5	21
67	Nonstoichiometry of A ^{II} B ^{VI} semiconductors. Crystal Research and Technology, 2015, 50, 115-123.	0.6	10
68	Universal approach for nonstoichiometry determination in binary chemical compounds. Crystal Research and Technology, 2015, 50, 93-100.	0.6	15
69	Prospective Electroluminescent Hybrid Materials. European Journal of Inorganic Chemistry, 2015, 2015, 1269-1274.	1.0	5
70	New hybrid materials for organic light-emitting diode devices. Russian Microelectronics, 2014, 43, 526-530.	0.1	4
71	Properties of Li2MoO4 single crystals grown by Czochralski technique. Journal of Crystal Growth, 2014, 401, 853-856.	0.7	38
72	Polymorphism of tris(8-hydroxyquinoline) aluminum, gallium, and indium. Doklady Chemistry, 2014, 454, 6-8.	0.2	7

#	Article	IF	CITATIONS
73	Organic luminophor metal complex in inorganic glass matrix—A new hybrid material. Journal of Crystal Growth, 2014, 401, 449-452.	0.7	11
74	Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor. Journal of Crystal Growth, 2014, 401, 686-690.	0.7	19
75	Czochralski growth of NaNO3–LiNO3 solid solution single crystals using axial vibrational control technique. Journal of Crystal Growth, 2014, 401, 899-904.	0.7	1
76	Hybrid nanofilms with laser-control luminescence. , 2014, , .		0
77	Spectral properties of CdTe-CdSe powders with controlled nonstoichiometry. , 2014, , .		0
78	Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure. Journal of Crystal Growth, 2014, 385, 88-94.	0.7	5
79	Hybrid materials based on organic luminophores in inorganic glass matrix. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 886-889.	0.2	7
80	CdTe homogeneity region. Inorganic Materials, 2013, 49, 439-444.	0.2	6
81	Thermodynamic features of axial vibrational control technique for crystal growth from the melt. CrystEngComm, 2013, 15, 2213-2219.	1.3	11
82	Perfection of NaNO3 single crystals grown by axial vibrational control technique in Czochralski configuration. Journal of Crystal Growth, 2012, 360, 167-171.	0.7	12
83	Polymorphous transition wurtzite-sphalerite for nonstoichiometric cadmium and zinc chalcogenides. Doklady Chemistry, 2011, 440, 244-247.	0.2	3
84	Simulation and crystal growth of CdTe by axial vibration control technique in Bridgman configuration. Journal of Crystal Growth, 2011, 318, 528-532.	0.7	13
85	Single crystal growth by axial vibrational control technique in Czochralski configuration. Journal of Crystal Growth, 2011, 318, 979-982.	0.7	12
86	Experimental and numerical modeling of Czochralski crystal growth under axial vibrational control of the melt. Journal of Crystal Growth, 2010, 312, 1429-1433.	0.7	8
87	Czochralski crystal growth assisted by axial vibrational control technique. Journal of Crystal Growth, 2010, 312, 1104-1108.	0.7	10
88	Structure and electrical conductivity of selenium-ion-implanted CdSe films. Inorganic Materials, 2010, 46, 598-600.	0.2	0
89	A new method of heat and mass transfer control in the melt at crystal growth by Czochralski technique. Doklady Physics, 2009, 54, 410-412.	0.2	6
90	Growth of nonstoichiometric PbTe crystals by the vertical Bridgman method using the axial-vibration control technique. Crystallography Reports, 2005, 50, S124-S129.	0.1	8

#	Article	IF	CITATIONS
91	A Computer-Based Facility for Investigating the Melt Hydrodynamics during Bridgman Crystal Growth at Low-Frequency Vibrations in a Melt. Instruments and Experimental Techniques, 2004, 47, 554-561.	0.1	7
92	Synthesis of the Bi ₂ GeO ₅ Ferroelectric Crystalline Phase from a Nonstoichiometric Batch. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100666.	0.8	1

7