
Swetha Chandrasekaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustainable Energy and Fuels, 2022, 6, 1249-1263.	2.5	3
2	Noninvasive Detection, Tracking, and Characterization of Aerogel Implants Using Diagnostic Ultrasound. Polymers, 2022, 14, 722.	2.0	4
3	Three-Dimensional Printed MoS ₂ /Graphene Aerogel Electrodes for Hydrogen Evolution Reactions. ACS Materials Au, 2022, 2, 596-601.	2.6	16
4	3D-printed nanoporous ceramics: Tunable feedstock for direct ink write and projection microstereolithography. Materials and Design, 2021, 198, 109337.	3.3	20
5	Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography. RSC Advances, 2021, 11, 22633-22639.	1.7	10
6	Enhanced neurite outgrowth on electrically conductive carbon aerogel substrates in the presence of an external electric field. Soft Matter, 2021, 17, 4489-4495.	1.2	8
7	Carbon aerogels with integrated engineered macroporous architectures for improved mass transport. Carbon, 2021, 179, 125-132.	5.4	10
8	Efficient Hydrogen Delivery for Microbial Electrosynthesis via 3D-Printed Cathodes. Frontiers in Microbiology, 2021, 12, 696473.	1.5	25
9	Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
10	Additive manufacturing of graded B4C-Al cermets with complex shapes. Materials and Design, 2020, 188, 108516.	3.3	24
11	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	11.1	191
12	Anomalous water diffusion in epoxy/carbon nanoparticle composites. Polymer Degradation and Stability, 2019, 164, 127-135.	2.7	34
13	Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule, 2019, 3, 459-470.	11.7	352
14	3D printing of high performance cyanate ester thermoset polymers. Journal of Materials Chemistry A, 2018, 6, 853-858.	5.2	65
15	Complex shaped boron carbides from negative additive manufacturing. Materials and Design, 2018, 148, 8-16.	3.3	31
16	PC-12 cells adhesion and differentiation on carbon aerogel scaffolds. MRS Communications, 2018, 8, 1426-1432.	0.8	15
17	Negative Additive Manufacturing of Complex Shaped Boron Carbides. Journal of Visualized Experiments, 2018, , .	0.2	3
18	Direct ink writing of organic and carbon aerogels. Materials Horizons, 2018, 5, 1166-1175.	6.4	78

#	Article	IF	CITATIONS
19	Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels. Journal of Materials Research, 2017, 32, 4166-4185.	1.2	71
20	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-120.	6.2	302
21	Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Composites Science and Technology, 2016, 123, 187-204.	3.8	181
22	Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite. Composites Science and Technology, 2016, 122, 50-58.	3.8	31
23	The effect of carbon nanoparticles on the fatigue performance of carbon fibre reinforced epoxy. Composites Part A: Applied Science and Manufacturing, 2014, 67, 233-240.	3.8	106
24	Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology, 2014, 97, 90-99.	3.8	451
25	Impact of Filler Functionalisation on the Crystallinity, Thermal Stability and Mechanical Properties of Thermoplastic Elastomer/Carbon Nanotube Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 359-370.	1.7	13
26	Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Composites Science and Technology, 2013, 87, 36-41.	3.8	74
27	Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties. European Polymer Journal, 2013, 49, 3878-3888.	2.6	274
28	Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Composites Part A: Applied Science and Manufacturing, 2013, 49, 51-57.	3.8	34