
Jörg S Hartig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy. Chemical Reviews, 2007, 107, 3715-3743.	47.7	820
2	A comparison of DNA and RNA quadruplex structures and stabilities. Bioorganic and Medicinal Chemistry, 2009, 17, 6811-6815.	3.0	191
3	RNA Quadruplex-Based Modulation of Gene Expression. Chemistry and Biology, 2007, 14, 757-763.	6.0	189
4	Sequence-Specific Detection of MicroRNAs by Signal-Amplifying Ribozymes. Journal of the American Chemical Society, 2004, 126, 722-723.	13.7	169
5	Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie - International Edition, 2008, 47, 2604-2607.	13.8	164
6	Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnology, 2002, 20, 717-722.	17.5	154
7	A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Molecular BioSystems, 2010, 6, 807.	2.9	129
8	Artificial Ribozyme Switches Containing Natural Riboswitch Aptamer Domains. Angewandte Chemie - International Edition, 2009, 48, 2715-2718.	13.8	119
9	Predictable suppression of gene expression by 5′-UTR-based RNA quadruplexes. Nucleic Acids Research, 2009, 37, 6811-6817.	14.5	111
10	Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E554-62.	7.1	98
11	A general design strategy for protein-responsive riboswitches in mammalian cells. Nature Methods, 2014, 11, 1154-1160.	19.0	90
12	A Matter of Location: Influence of G-Quadruplexes on Escherichia coli Gene Expression. Chemistry and Biology, 2014, 21, 1511-1521.	6.0	78
13	Human Telomeric Quadruplex Conformations Studied by Pulsed EPR. Angewandte Chemie - International Edition, 2009, 48, 9728-9730.	13.8	72
14	Artificial Riboswitches: Synthetic mRNAâ€Based Regulators of Gene Expression. ChemBioChem, 2008, 9, 1873-1878.	2.6	71
15	Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nature Biotechnology, 2001, 19, 56-61.	17.5	70
16	Ribozyme-Based Aminoglycoside Switches of Gene Expression Engineered by Genetic Selection in <i>S. cerevisiae</i> . ACS Synthetic Biology, 2015, 4, 516-525.	3.8	69
17	Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nature Communications, 2016, 7, 12834.	12.8	69
18	Comparative Investigation of the Genomic Regions Involved in Antigenic Variation of the TprK Antigen among Treponemal Species, Subspecies, and Strains. Journal of Bacteriology, 2012, 194, 4208-4225.	2.2	66

#	Article	IF	CITATIONS
19	Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Nature Communications, 2018, 9, 5071.	12.8	65
20	Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nature Protocols, 2013, 8, 131-147.	12.0	61
21	Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Research, 2012, 40, e167-e167.	14.5	58
22	Longâ€Range Distance Determination in a DNA Model System inside <i>Xenopus laevis</i> Oocytes by Inâ€Cell Spinâ€Label EPR. ChemBioChem, 2011, 12, 1992-1995.	2.6	57
23	Novel DNA Catalysts Based on Gâ€Quadruplex Recognition. ChemBioChem, 2008, 9, 1061-1064.	2.6	49
24	A New Anticoagulantâ^'Antidote Pair:Â Control of Thrombin Activity by Aptamers and Porphyrins. Journal of the American Chemical Society, 2007, 129, 3036-3037.	13.7	47
25	Riboswitch-mediated Attenuation of Transgene Cytotoxicity Increases Adeno-associated Virus Vector Yields in HEK-293 Cells. Molecular Therapy, 2015, 23, 1582-1591.	8.2	47
26	Synthesis of All Possible Canonical (3′–5′-Linked) Cyclic Dinucleotides and Evaluation of Riboswitch Interactions and Immune-Stimulatory Effects. Journal of the American Chemical Society, 2017, 139, 16154-16160.	13.7	43
27	Smallâ€Moleculeâ€Dependent Regulation of Transfer RNA in Bacteria. Angewandte Chemie - International Edition, 2009, 48, 7564-7567.	13.8	42
28	Bisquinolinium compounds induce quadruplex-specific transcriptome changes in HeLa S3 cell lines. BMC Research Notes, 2012, 5, 138.	1.4	42
29	Efficient Suppression of Gene Expression by Targeting 5′â€UTRâ€Based RNA Quadruplexes with Bisquinolinium Compounds. ChemBioChem, 2011, 12, 1663-1668.	2.6	41
30	Intracellular Conformations of Human Telomeric Quadruplexes Studied by Electron Paramagnetic Resonance Spectroscopy. ChemPhysChem, 2012, 13, 1444-1447.	2.1	38
31	Reporter Ribozymes for Real-Time Analysis of Domain-Specific Interactions in Biomolecules: HIV-1 Reverse Transcriptase and the Primer–Template Complex. Angewandte Chemie - International Edition, 2002, 41, 4263-4266.	13.8	36
32	Aptazyme-Mediated Regulation of 16S Ribosomal RNA. Chemistry and Biology, 2010, 17, 236-242.	6.0	36
33	Investigation of mRNA quadruplex formation in Escherichia coli. Nature Protocols, 2009, 4, 1632-1640.	12.0	35
34	Small molecule-triggered assembly of DNA nanoarchitectures. Chemical Communications, 2010, 46, 1866-1868.	4.1	35
35	Ligandâ€dependent ribozymes. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1395.	6.4	35
36	High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nature Communications, 2020, 11, 714.	12.8	35

#	Article	IF	CITATIONS
37	Inhibition of Dicing of Guanosineâ€Rich shRNAs by Quadruplexâ€Binding Compounds. ChemBioChem, 2008, 9, 2722-2729.	2.6	34
38	Thermozymes. RNA Biology, 2013, 10, 1009-1016.	3.1	34
39	A tetracycline-dependent ribozyme switch allows conditional induction of gene expression in Caenorhabditis elegans. Nature Communications, 2019, 10, 491.	12.8	34
40	A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synthetic Biology, 2020, 9, 1292-1305.	3.8	33
41	An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Research, 2013, 41, 5542-5552.	14.5	31
42	4. RNA Quadruplexes. Metal Ions in Life Sciences, 2011, 9, 125-139.	1.0	31
43	Pulsed EPR spectroscopy distance measurements of DNA internally labelled with Gd ³⁺ -DOTA. Chemical Communications, 2015, 51, 13850-13853.	4.1	29
44	Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation. Molecular BioSystems, 2012, 8, 2242.	2.9	27
45	Turning Inhibitors into Activators: A Hammerhead Ribozyme Controlled by a Guanine Quadruplex. Angewandte Chemie - International Edition, 2006, 45, 5875-5878.	13.8	26
46	Aptamers in RNA-based switches of gene expression. Current Opinion in Biotechnology, 2020, 63, 34-40.	6.6	25
47	Small-Molecule-Triggered Manipulation of DNA Three-Way Junctions. Journal of the American Chemical Society, 2011, 133, 4706-4709.	13.7	24
48	Identification of Novel Quadruplex Ligands from Small Molecule Libraries by FRETâ€Based Highâ€Throughput Screening. ChemBioChem, 2011, 12, 1422-1426.	2.6	24
49	Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chemical Communications, 2012, 48, 8258.	4.1	23
50	A bacterial DNA quadruplex with exceptional K ⁺ selectivity and unique structural polymorphism. Chemical Science, 2014, 5, 2809-2818.	7.4	23
51	Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Research, 2020, 48, 12889-12899.	14.5	23
52	Reporter assays for studying quadruplex nucleic acids. Methods, 2012, 57, 115-121.	3.8	22
53	Aptamer-Mediated Control of Polyadenylation for Gene Expression Regulation in Mammalian Cells. ACS Synthetic Biology, 2020, 9, 3008-3018.	3.8	22
54	Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Chemical Communications, 2008, , 4010.	4.1	21

#	Article	IF	CITATIONS
55	Expanded hammerhead ribozymes containing addressable three-way junctions. Rna, 2009, 15, 968-976.	3.5	21
56	Discovery of a Ni2+-dependent guanidine hydrolase in bacteria. Nature, 2022, 603, 515-521.	27.8	20
57	Intrastrand triplex DNA repeats in bacteria: a source of genomic instability. Nucleic Acids Research, 2015, 43, gkv1017.	14.5	18
58	A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes. Plant Physiology, 2020, 182, 123-135.	4.8	18
59	Highly motif- and organism-dependent effects of naturally occurring hammerhead ribozyme sequences on gene expression. RNA Biology, 2018, 15, 231-241.	3.1	16
60	Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorganic and Medicinal Chemistry, 2013, 21, 6156-6161.	3.0	15
61	Gâ€Quadruplexes Stabilised by 8â€Oxoâ€2â€2â€deoxyguanosine. Chemistry - A European Journal, 2011, 17, 10838-10843.	3.3	14
62	Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation. ACS Nano, 2016, 10, 7418-7427.	14.6	14
63	Neomycin-dependent hammerhead ribozymes for the direct control of gene expression in Saccharomyces cerevisiae. Methods, 2019, 161, 35-40.	3.8	14
64	Widespread bacterial utilization of guanidine as nitrogen source. Molecular Microbiology, 2021, 116, 200-210.	2.5	14
65	Efficient splicing-based RNA regulators for tetracycline-inducible gene expression in human cell culture and <i>C. elegans</i> . Nucleic Acids Research, 2021, 49, e71-e71.	14.5	14
66	A Cu(II)–ATP complex efficiently catalyses enantioselective Diels–Alder reactions. Nature Communications, 2020, 11, 4792.	12.8	13
67	Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp PLoS ONE, 2015, 10, e0144275.	2.5	12
68	Ribozyme-Based Transfer RNA Switches for Post-transcriptional Control of Amino Acid Identity in Protein Synthesis. Journal of the American Chemical Society, 2013, 135, 8222-8226.	13.7	11
69	The 3′-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria. RNA Biology, 2017, 14, 1522-1533.	3.1	11
70	In Vivo Screening for Aptazyme-Based Bacterial Riboswitches. Methods in Molecular Biology, 2014, 1111, 237-249.	0.9	11
71	Reporter-Ribozyme zur Echtzeit-Analyse domÄ ¤ enspezifischer Interaktionen in Biomolekülen: reverse Transkriptase von HIV-1 und der Primer-Templatkomplex. Angewandte Chemie, 2002, 114, 4440-4444.	2.0	10
72	In Vivo Screening of Ligand-Dependent Hammerhead Ribozymes. Methods in Molecular Biology, 2012, 848, 455-463.	0.9	10

#	Article	IF	CITATIONS
73	Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Methods in Molecular Biology, 2015, 1316, 127-140.	0.9	10
74	Pseudomonas canavaninivorans sp. nov., isolated from bean rhizosphere. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	10
75	Engineering of Ribozyme-Based Aminoglycoside Switches of Gene Expression by In Vivo Genetic Selection in Saccharomyces cerevisiae. Methods in Enzymology, 2015, 550, 301-320.	1.0	8
76	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie - International Edition, 2020, 59, 3444-3449.	13.8	8
77	Teaching Bacteria New Tricks—With RNA Switches. Angewandte Chemie - International Edition, 2007, 46, 7741-7743.	13.8	6
78	Chemical synthesis, purification, and characterization of 3′-5′-linked canonical cyclic dinucleotides (CDNs). Methods in Enzymology, 2019, 625, 41-59.	1.0	6
79	Engineering Aptazyme Switches for Conditional in Mammalian Cells Utilizing an Approach. Methods in Molecular Biology, 2021, 2323, 199-212.	0.9	6
80	Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation. Nucleic Acids Research, 2021, 49, 7954-7965.	14.5	6
81	Interactions between Flavins and Quadruplex Nucleic Acids. ChemBioChem, 2015, 16, 2437-2440.	2.6	4
82	TPP riboswitch characterization in Alishewanella tabrizica and Alishewanella aestuarii and comparison with other TPP riboswitches. Microbiological Research, 2017, 195, 71-80.	5.3	4
83	Screening of Molecular Interactions Using Reporter Hammerhead Ribozymes. Methods in Molecular Biology, 2008, 429, 251-263.	0.9	4
84	Abolishing HIV-1 infectivity using a polypurine tract-specific G-quadruplex-forming oligonucleotide. BMC Infectious Diseases, 2016, 16, 358.	2.9	2
85	The dual aptamer approach: rational design of a high-affinity FAD aptamer. Organic and Biomolecular Chemistry, 2016, 14, 447-450.	2.8	2
86	Turning Riboswitches Loose. ChemBioChem, 2010, 11, 640-641.	2.6	1
87	A Group I Intron Riboswitch. Chemistry and Biology, 2010, 17, 920-921.	6.0	1
88	Aptamer-Based Control of Gene Expression Utilizing Endogenous miRNAs. Molecular Therapy, 2018, 26, 1178-1180.	8.2	1
89	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie, 2020, 132, 3472-3477.	2.0	1
90	Screening of Genetic Switches Based on the Twister Ribozyme Motif. Methods in Molecular Biology, 2016, 1380, 225-239.	0.9	1

0

#	Article	IF	CITATIONS
91	Binding versus Triggering Riboswitches. Chemistry and Biology, 2014, 21, 167.	6.0	ο

92 4 RNA Quadruplexes. , 2015, , 125-140.