List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competitive induction of circularly polarized luminescence of CdSe/ZnS quantum dots in a nucleotide–amino acid hydrogel. Materials Advances, 2022, 3, 682-688.	5.4	5
2	Theranostic nanoparticles with disease-specific administration strategies. Nano Today, 2022, 42, 101335.	11.9	54
3	Twoâ€Pronged Intracellular Coâ€Delivery of Antigen and Adjuvant for Synergistic Cancer Immunotherapy. Advanced Materials, 2022, 34, e2202168.	21.0	41
4	Effects of Repetitive Pressure on the Photoluminescence of Bare and ZnS-Capped CuInS ₂ Quantum Dots: Implications for Nanoscale Stress Sensors. ACS Applied Nano Materials, 2022, 5, 5617-5624.	5.0	9
5	Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano, 2022, 16, 8076-8094.	14.6	31
6	Nanoprobes for Visualization of Cancer Pathology <i>in Vivo</i> [※] . Acta Chimica Sinica, 2022, 80, 805.	1.4	4
7	Aqueous synthesis of bright near-infrared-emitting Zn-Cu-In-Se quantum dots for multiplexed detection of tumor markers. Nano Research, 2022, 15, 8351-8359.	10.4	3
8	Semiconductor Nanocrystals Emitting in the Second Nearâ€Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials, 2022, 10, .	7.3	16
9	Two-Dimensional and Subnanometer-Thin Quasi-Copper-Sulfide Semiconductor Formed upon Copper–Copper Bonding. ACS Nano, 2021, 15, 873-883.	14.6	12
10	Turning-on persistent luminescence out of chromium-doped zinc aluminate nanoparticles by instilling antisite defects under mild conditions. Nanoscale, 2021, 13, 8514-8523.	5.6	10
11	A Cyclodextrinâ€Hosted Ir(III) Complex for Ratiometric Mapping of Tumor Hypoxia In Vivo. Advanced Science, 2021, 8, 2004044.	11.2	22
12	Continuous Flow Synthesis of Persistent Luminescent Chromium-Doped Zinc Gallate Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 7067-7075.	4.6	8
13	Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation(China), 2021, 2, 100174.	9.1	29
14	Manganese-Mediated Growth of ZnS Shell on KMnF ₃ :Yb,Er Cores toward Enhanced Up/Downconversion Luminescence. ACS Applied Materials & Interfaces, 2020, 12, 11934-11944.	8.0	18
15	Doping Lanthanide Nanocrystals With Non-lanthanide Ions to Simultaneously Enhance Up- and Down-Conversion Luminescence. Frontiers in Chemistry, 2020, 8, 832.	3.6	21
16	Longer and Stronger: Improving Persistent Luminescence in Size-Tuned Zinc Gallate Nanoparticles by Alcohol-Mediated Chromium Doping. ACS Nano, 2020, 14, 12113-12124.	14.6	50
17	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020, 8, 6792-6797.	5.8	20
18	Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy. View, 2020, 1, e19.	5.3	35

#	Article	IF	CITATIONS
19	Bioinspired Cryoprotectants of Glucose-Based Carbon Dots. ACS Applied Bio Materials, 2020, 3, 3785-3791.	4.6	21
20	Inside Back Cover: Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy (View 2/2020). View, 2020, 1, e30.	5.3	0
21	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	10.0	70
22	Upconversion luminescence mediated photodynamic therapy through hydrophilically engineered porphyrin. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107551.	3.6	9
23	Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission <i>via</i> aqueous based synthesis. Chemical Communications, 2019, 55, 15053-15056.	4.1	24
24	Emitting/Sensitizing Ions Spatially Separated Lanthanide Nanocrystals for Visualizing Tumors Simultaneously through Up―and Down onversion Nearâ€Infrared II Luminescence In Vivo. Small, 2019, 15, e1905344.	10.0	41
25	Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Science Translational Medicine, 2019, 11, .	12.4	95
26	Photoluminescence: Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation (Small 50/2019). Small, 2019, 15, 1970288.	10.0	2
27	Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Advanced Materials, 2018, 30, e1706356.	21.0	227
28	Narrowing the Photoluminescence of Aqueous CdTe Quantum Dots via Ostwald Ripening Suppression Realized by Programmed Dropwise Precursor Addition. Journal of Physical Chemistry C, 2018, 122, 11109-11118.	3.1	16
29	Molecular mechanisms for delicately tuning the morphology and properties of Fe ₃ O ₄ nanoparticle clusters. CrystEngComm, 2018, 20, 2421-2429.	2.6	11
30	Dual-Ratiometric Target-Triggered Fluorescent Probe for Simultaneous Quantitative Visualization of Tumor Microenvironment Protease Activity and pH <i>in Vivo</i> . Journal of the American Chemical Society, 2018, 140, 211-218.	13.7	207
31	Materials aspects of semiconductor nanocrystals for optoelectronic applications. Materials Horizons, 2017, 4, 155-205.	12.2	78
32	Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nature Communications, 2017, 8, 996.	12.8	210
33	The Yin and Yang of coordinating co-solvents in the size-tuning of Fe ₃ O ₄ nanocrystals through flow synthesis. Nanoscale, 2017, 9, 18609-18612.	5.6	14
34	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	47.7	364
35	Differently sized magnetic/upconversion luminescent NaGdF ₄ :Yb,Er nanocrystals: flow synthesis and solvent effects. Chemical Communications, 2016, 52, 5872-5875.	4.1	28
36	Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale, 2016, 8, 12579-12587.	5.6	36

#	Article	IF	CITATIONS
37	Flow Synthesis of Biocompatible Fe ₃ O ₄ Nanoparticles: Insight into the Effects of Residence Time, Fluid Velocity, and Tube Reactor Dimension on Particle Size Distribution. Chemistry of Materials, 2015, 27, 1299-1305.	6.7	64
38	Insight into Strain Effects on Band Alignment Shifts, Carrier Localization and Recombination Kinetics in CdTe/CdS Core/Shell Quantum Dots. Journal of the American Chemical Society, 2015, 137, 2073-2084.	13.7	81
39	Aqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. Nanoscale, 2015, 7, 11075-11081.	5.6	68
40	Super-stable centimetre-scale inverse opal belts integrated with CdTe QDs for narrow band fluorescence optical waveguiding. Journal of Materials Chemistry C, 2015, 3, 10964-10967.	5.5	0
41	Chemical Spacer Design for Engineering the Relaxometric Properties of Core–Shell Structured Rare Earth Nanoparticles. Chemistry of Materials, 2015, 27, 7918-7925.	6.7	24
42	Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials, 2014, 35, 1608-1617.	11.4	110
43	Anchoring Group Effects of Surface Ligands on Magnetic Properties of Fe ₃ O ₄ Nanoparticles: Towards High Performance MRI Contrast Agents. Advanced Materials, 2014, 26, 2694-2698.	21.0	194
44	In situ111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chemical Communications, 2014, 50, 2170.	4.1	50
45	Revisiting the coordination chemistry for preparing manganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale, 2014, 6, 5918.	5.6	34
46	Detection of Epstein–Barr virus infection in cancer by using highly specific nanoprobe based on dBSA capped CdTe quantum dots. RSC Advances, 2014, 4, 22545.	3.6	9
47	Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Advanced Materials, 2014, 26, 6367-6386.	21.0	145
48	Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High Relaxivity. Journal of Physical Chemistry C, 2013, 117, 18752-18761.	3.1	58
49	Bifunctional Superparticles Achieved by Assembling Fluorescent CuInS2@ZnS Quantum Dots and Amphibious Fe3O4Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 21014-21020.	3.1	21
50	Surface-biofunctionalized multicore/shell CdTe@SiO ₂ composite particles for immunofluorescence assay. Nanotechnology, 2011, 22, 505104.	2.6	18
51	Gelification: An Effective Measure for Achieving Differently Sized Biocompatible Fe ₃ O ₄ Nanocrystals through a Single Preparation Recipe. Journal of the American Chemical Society, 2011, 133, 19512-19523.	13.7	66
52	Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chemical Communications, 2011, 47, 9293.	4.1	99
53	Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe ₃ O ₄ Nanoparticle Aggregates as Color Reagents. Analytical Chemistry, 2011, 83, 6778-6784.	6.5	216
54	Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials, 2011, 32, 1923-1931.	11.4	40

#	Article	IF	CITATIONS
55	Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes. Nanotechnology, 2010, 21, 045606.	2.6	28
56	Penetration of Quantum Dot Particles Through Human Skin. Journal of Biomedical Nanotechnology, 2010, 6, 586-595.	1.1	60
57	Highly Fluorescent CdTe@SiO ₂ Particles Prepared via Reverse Microemulsion Method. Chemistry of Materials, 2010, 22, 420-427.	6.7	107
58	Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method:  Toward Size-Controllable and Robust Fluorescent Nanoparticles. Chemistry of Materials, 2007, 19, 4123-4128.	6.7	176