
Craig T Stoppiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host–Guest Hybrid Redox Materials Selfâ€Assembled from Polyoxometalates and Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2019, 31, e1904182.	21.0	77
2	Carbon Nanotubes as Electrically Active Nanoreactors for Multi-Step Inorganic Synthesis: Sequential Transformations of Molecules to Nanoclusters and Nanoclusters to Nanoribbons. Journal of the American Chemical Society, 2016, 138, 8175-8183.	13.7	68
3	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 9941-9946.	13.8	65
4	A Wavy Two-Dimensional Covalent Organic Framework from Core-Twisted Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2019, 141, 14403-14410.	13.7	63
5	Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nature Chemistry, 2020, 12, 921-928.	13.6	58
6	Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nature Communications, 2018, 9, 3382.	12.8	35
7	Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale. Science Advances, 2020, 6, eaay5849.	10.3	30
8	A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale, 2017, 9, 14385-14394.	5.6	22
9	Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. Journal of Materials Chemistry A, 2017, 5, 21467-21477.	10.3	17
10	Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer. Nanoscale, 2019, 11, 2848-2854.	5.6	17
11	Bond Dissociation and Reactivity of HF and H ₂ 0 in a Nano Test Tube. ACS Nano, 2020, 14, 11178-11189.	14.6	17
12	Growth of Carbon Nanotubes inside Boron Nitride Nanotubes by Coalescence of Fullerenes: Toward the World's Smallest Coaxial Cable. Small Methods, 2017, 1, 1700184.	8.6	16
13	Encapsulation of Cadmium Selenide Nanocrystals in Biocompatible Nanotubes: DFT Calculations, Xâ€ray Diffraction Investigations, and Confocal Fluorescence Imaging. ChemistryOpen, 2018, 7, 144-158.	1.9	15
14	Understanding charge transport in wavy 2D covalent organic frameworks. Nanoscale, 2021, 13, 6829-6833.	5.6	14
15	An Expanded 2D Fused Aromatic Network with 90â€Ring Hexagons. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
16	Direct Synthesis of Multiplexed Metalâ€Nanowireâ€Based Devices by Using Carbon Nanotubes as Vector Templates. Angewandte Chemie - International Edition, 2019, 58, 9928-9932.	13.8	10
17	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 10029-10034.	2.0	9
18	Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors. Nanoscale, 2016, 8, 11727-11737.	5.6	7

CRAIG T STOPPIELLO

#	Article	IF	CITATIONS
19	Direct Synthesis of Multiplexed Metalâ€Nanowireâ€Based Devices by Using Carbon Nanotubes as Vector Templates. Angewandte Chemie, 2019, 131, 10033-10037.	2.0	4
20	Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Research, 0, , 1.	10.4	4
21	Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes. Nanoscale, 2022, 14, 1978-1989.	5.6	4
22	Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO ₂ Sorption and the Hydrosilylation of Phenylacetylene. ACS Applied Nano Materials, 2022, 5, 2075-2086.	5.0	4
23	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie - International Edition, 2020, 59, 22922-22927.	13.8	3
24	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie, 2020, 132, 23122-23127.	2.0	0
25	Innentitelbild: Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 22994-22994.	2.0	0
26	Graphene nanoribbons with incorporated Co atoms: Optical spectrum and magnetic response. AIP Conference Proceedings, 2021, , .	0.4	0
27	An Expanded 2D Fused Aromatic Network with 90â€Ring Hexagons. Angewandte Chemie, 0, , .	2.0	Ο