VÃ-ctor Polo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575210/publications.pdf Version: 2024-02-01

		109321	133252
117	4,120	35	59
papers	citations	h-index	g-index
132 all docs	132 docs citations	132 times ranked	4105 citing authors

#	Article	IF	CITATIONS
1	About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error. Journal of Chemical Physics, 2005, 123, 164110.	3.0	318
2	Electron correlation and the self-interaction error of density functional theory. Molecular Physics, 2002, 100, 1771-1790.	1.7	202
3	Ligand-Controlled Regioselectivity in the Hydrothiolation of Alkynes by Rhodium N-Heterocyclic Carbene Catalysts. Journal of the American Chemical Society, 2012, 134, 8171-8183.	13.7	170
4	Understanding Reaction Mechanisms in Organic Chemistry from Catastrophe Theory Applied to the Electron Localization Function Topology. Journal of Physical Chemistry A, 2008, 112, 7128-7136.	2.5	165
5	Effective Fixation of CO ₂ by Iridiumâ€Catalyzed Hydrosilylation. Angewandte Chemie - International Edition, 2012, 51, 12824-12827.	13.8	130
6	Some thoughts about the stability and reliability of commonly used exchange?correlation functionals ? coverage of dynamic and nondynamic correlation effects. Theoretical Chemistry Accounts, 2002, 107, 291-303.	1.4	116
7	Implicit and Explicit Coverage of Multi-reference Effects by Density Functional Theory. International Journal of Molecular Sciences, 2002, 3, 604-638.	4.1	111
8	Understanding the Molecular Mechanism of the 1,3-Dipolar Cycloaddition between Fulminic Acid and Acetylene in Terms of the Electron Localization Function and Catastrophe Theory. Chemistry - A European Journal, 2004, 10, 5165-5172.	3.3	95
9	Long-range and short-range Coulomb correlation effects as simulated by Hartree-Fock, local density approximation, and generalized gradient approximation exchange functionals. Theoretical Chemistry Accounts, 2003, 109, 22-35.	1.4	81
10	An Alternative Mechanistic Paradigm for the βâ€∢i>Z Hydrosilylation of Terminal Alkynes: The Role of Acetone as a Silane Shuttle. Chemistry - A European Journal, 2013, 19, 17559-17566.	3.3	81
11	Halogen-Bonding Complexes Based on Bis(iodoethynyl)benzene Units: A New Versatile Route to Supramolecular Materials. Chemistry of Materials, 2013, 25, 4503-4510.	6.7	77
12	Halogen Bonding Interactions of <i>sym</i> -Triiodotrifluorobenzene with Halide Anions: A Combined Structural and Theoretical Study. Crystal Growth and Design, 2008, 8, 2241-2247.	3.0	74
13	Mild and Selective H/D Exchange at the βâ€Position of Aromatic αâ€Olefins by Nâ€Heterocyclic Carbene–Hydride–Rhodium Catalysts. Angewandte Chemie - International Edition, 2011, 50, 3938-3942.	13.8	72
14	The thiocyanate anion as a polydentate halogen bond acceptor. CrystEngComm, 2010, 12, 558-566.	2.6	67
15	Influence of the self-interaction error on the structure of the DFT exchange hole. Chemical Physics Letters, 2002, 352, 469-478.	2.6	65
16	Towards understanding of magnetic interactions within a series of tetrathiafulvalene–π conjugated-verdazyl diradical cation system: a density functional theory study. Physical Chemistry Chemical Physics, 2008, 10, 857-864.	2.8	60
17	Direct Access to Parent Amido Complexes of Rhodium and Iridium through NH Activation of Ammonia. Angewandte Chemie - International Edition, 2011, 50, 11735-11738.	13.8	60
18	A synthon for a 14-electron Ir(iii) species: catalyst for highly selective β-(Z) hydrosilylation of terminal alkynes. Chemical Communications, 2012, 48, 9480.	4.1	60

#	Article	IF	CITATIONS
19	A Theoretical Study on the Reaction Mechanism for the Bergman Cyclization from the Perspective of the Electron Localization Function and Catastrophe Theory. Journal of Physical Chemistry A, 2005, 109, 3687-3693.	2.5	57
20	A joint study based on the electron localization function and catastrophe theory of the chameleonic and centauric models for the Cope rearrangement of 1,5-hexadiene and its cyano derivatives. Journal of Computational Chemistry, 2005, 26, 1427-1437.	3.3	56
21	An electron localization function study of the trimerization of acetylene: Reaction mechanism and development of aromaticity. Chemical Physics Letters, 2005, 406, 393-397.	2.6	54
22	Hydroxo–Rhodium–N-Heterocyclic Carbene Complexes as Efficient Catalyst Precursors for Alkyne Hydrothiolation. ACS Catalysis, 2013, 3, 2910-2919.	11.2	53
23	CO ₂ Activation and Catalysis Driven by Iridium Complexes. ChemCatChem, 2013, 5, 3481-3494.	3.7	53
24	Trinuclear Mo ₃ S ₇ Clusters Coordinated to Dithiolate or Diselenolate Ligands and Their Use in the Preparation of Magnetic Single Component Molecular Conductors. Inorganic Chemistry, 2008, 47, 9400-9409.	4.0	48
25	Reply to "Comment on â€~About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error'―[J. Chem. Phys. 123, 164110 (2005)]. Journal of Chemical Physics, 2006, 124, 107102.	3.0	47
26	New insights on the bridge carbon–carbon bond in propellanes: A theoretical study based on the analysis of the electron localization function. Journal of Computational Chemistry, 2007, 28, 857-864.	3.3	47
27	Pyridineâ€Enhanced Headâ€toâ€Tail Dimerization of Terminal Alkynes by a Rhodium–Nâ€Heterocyclicâ€Carbe Catalyst. Chemistry - A European Journal, 2013, 19, 15304-15314.	ne _{3.3}	46
28	A well-defined NHC–Ir(iii) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights. Chemical Science, 2017, 8, 4811-4822.	7.4	44
29	Toward an Understanding of the Catalytic Role of Hydrogen-Bond Donor Solvents in the Hetero-Dielsâ^'Alder Reaction between Acetone and Butadiene Derivative. Journal of Physical Chemistry A, 2005, 109, 10438-10444.	2.5	43
30	An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions. Theoretical Chemistry Accounts, 2008, 120, 341-349.	1.4	41
31	Iridium atalyzed Hydrogen Production from Hydrosilanes and Water. ChemCatChem, 2014, 6, 1691-1697.	3.7	41
32	Solventâ€Free Iridiumâ€Catalyzed Reactivity of CO ₂ with Secondary Amines and Hydrosilanes. ChemCatChem, 2015, 7, 3895-3902.	3.7	40
33	Spinâ^'Spin Interactions in Porphyrin-Based Monoverdazyl Radical Hybrid Spin Systems. Inorganic Chemistry, 2010, 49, 3516-3524.	4.0	38
34	Tuning PCP–Ir complexes: the impact of an N-heterocyclic olefin. Chemical Communications, 2015, 51, 12431-12434.	4.1	37
35	N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions. Dalton Transactions, 2016, 45, 12835-12845.	3.3	37
36	Design of Highly Selective Alkyne Hydrothiolation Rh ^I -NHC Catalysts: Carbonyl-Triggered Nonoxidative Mechanism. Organometallics, 2017, 36, 2198-2207.	2.3	34

#	Article	IF	CITATIONS
37	The Dehydrogenation of Alcohols through a Concerted Bimetallic Mechanism Involving an Amidoâ€Bridged Diiridium Complex. Angewandte Chemie - International Edition, 2012, 51, 8259-8263.	13.8	33
38	Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold(III) Complexes. Inorganic Chemistry, 2018, 57, 10832-10845.	4.0	33
39	Understanding Bond Formation in Polar One-Step Reactions. Topological Analyses of the Reaction between Nitrones and Lithium Ynolates. Journal of Organic Chemistry, 2015, 80, 4076-4083.	3.2	32
40	Lewis Acid and Substituent Effects on the Molecular Mechanism for the Nazarov Reaction of Penta-1,4-dien-3-one and Derivatives. A Topological Analysis Based on the Combined Use of Electron Localization Function and Catastrophe Theory. Journal of Chemical Theory and Computation, 2007, 3, 816-823.	5.3	31
41	Mechanistic Insights on the Reduction of CO ₂ to Silylformates Catalyzed by Irâ€NSiN Species. Chemistry - A European Journal, 2017, 23, 11898-11907.	3.3	30
42	A highly efficient Ir-catalyst for the solventless dehydrogenation of formic acid: the key role of an N-heterocyclic olefin. Green Chemistry, 2018, 20, 4875-4879.	9.0	29
43	Selective Cĭ£¿H Bond Functionalization of 2â€(2â€Thienyl)pyridine by a Rhodium Nâ€Heterocyclic Carbene Catalyst. ChemCatChem, 2014, 6, 3192-3199.	3.7	28
44	A Theoretical Study on the Electronic Structure of Auâ^'XO(0,-1,+1)Â(X = C, N, and O) Complexes:Â Effect of an External Electric Field. Journal of Physical Chemistry A, 2007, 111, 13255-13263.	2.5	27
45	Efficient Rhodiumâ€Catalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines. Chemistry - A European Journal, 2015, 21, 17701-17707.	3.3	27
46	Synthesis and characterization of a ∏F-ï€-verdazyl radical—a new building block for conducting and/or magnetic systems. New Journal of Chemistry, 2007, 31, 1973.	2.8	26
47	Hybrid Organic/Inorganic Complexes Based on Electroactive Tetrathiafulvalene-Functionalized Diphosphanes Tethered to C3-Symmetrized Mo3Q4 (Q = S, Se) Clusters. Inorganic Chemistry, 2010, 49, 1894-1904.	4.0	26
48	Better Understanding of the Ring-Cleavage Process of Cyanocyclopropyl Anionic Derivatives. A Theoretical Study Based on the Electron Localization Function. Journal of Organic Chemistry, 2006, 71, 754-762.	3.2	24
49	Mechanistic insight into the pyridine enhanced α-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(<scp>i</scp>)–N-heterocyclic carbene complexes. Catalysis Science and Technology, 2016, 6, 8548-8561.	4.1	24
50	Carboxylate-Assisted β-(<i>Z</i>) Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by a Zwitterionic Bis-NHC Rhodium(III) Complex. ACS Catalysis, 2020, 10, 7367-7380.	11.2	24
51	Olefin Epoxidation by Molybdenum Peroxo Compound: Molecular Mechanism Characterized by the Electron Localization Function and Catastrophe Theory. Journal of Physical Chemistry A, 2011, 115, 514-522.	2.5	23
52	Theoretical Studies on the Mechanism of Iridium-Catalyzed Alkene Hydrogenation by the Cationic Complex [IrH ₂ (NCMe) ₃ (P ^{<i>i</i>} Pr ₃)] ⁺ . Organometallics, 2014, 33, 5156-5163.	2.3	23
53	Ir-catalyzed selective reduction of CO ₂ to the methoxy or formate level with HSiMe(OSiMe ₃) ₂ . Catalysis Science and Technology, 2019, 9, 2858-2867.	4.1	23
54	Heterometallic Cuboidal Clusters M3Mâ€~Q4 (M = Mo, W; Mâ€~= Sn, Pb, As, Sb; Q = S, Se):  From Coordin Compounds to Supramolecular Adducts. Inorganic Chemistry, 2008, 47, 306-314.	ation 4.0	22

#	Article	IF	CITATIONS
55	Temperature Dual Enantioselective Control in a Rhodiumâ€Catalyzed Michaelâ€Type Friedel–Crafts Reaction: A Mechanistic Explanation. Chemistry - A European Journal, 2016, 22, 11064-11083.	3.3	22
56	Analysis of the Magnetic Entropy in Oxygen Reduction Reactions Catalysed by Manganite Perovskites. ChemCatChem, 2017, 9, 3358-3363.	3.7	22
57	Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt ₃ M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys. ACS Applied Materials & Interfaces, 2020, 12, 50484-50494.	8.0	22
58	<i>C</i> ₃ -Symmetric Trinuclear Molybdenum Cluster Sulfides:  Configurational Stability, Supramolecular Stereocontrol, and Absolute Configuration Assignment. Inorganic Chemistry, 2007, 46, 10717-10723.	4.0	21
59	A bimetallic iridium(ii) catalyst: [{Ir(IDipp)(H)}2][BF4]2 (IDipp =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	582 _{4.1} (1,	3-bis(2,6-diis
60	Rhodium atalyzed Dehydrogenative Silylation of Acetophenone Derivatives: Formation of Silyl Enol Ethers versus Silyl Ethers. Chemistry - A European Journal, 2016, 22, 14717-14729.	3.3	21
61	N–H Activation of Ammonia by [{M(μ-OMe)(cod)} ₂] (M = Ir, Rh) Complexes: A DFT Study. Organometallics, 2015, 34, 3959-3966.	2.3	20
62	Mechanistic Insights on the Functionalization of CO 2 with Amines and Hydrosilanes Catalyzed by a Zwitterionic Iridium Carboxylateâ€Functionalized Bisâ€NHC Catalyst. ChemCatChem, 2019, 11, 5524-5535.	3.7	20
63	P–H activation of secondary phosphanes on a parent amido diiridium complex. Dalton Transactions, 2014, 43, 1609-1619.	3.3	18
64	Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(<scp>i</scp>) complexes: the role of the X group. Physical Chemistry Chemical Physics, 2018, 20, 1105-1113.	2.8	18
65	Synergistic catalysis: enantioselective cyclopropanation of alkylidene benzoxazoles by Pd(<scp>ii</scp>) and secondary amine catalysis. Scope, limitations and mechanistic insight. Organic Chemistry Frontiers, 2018, 5, 806-812.	4.5	18
66	A Density Functional Theory Study of the Magnetic Exchange Coupling in Dinuclear Manganese(II) Inverse Crown Structures. Journal of Physical Chemistry A, 2009, 113, 14008-14013.	2.5	17
67	An Insight into Transfer Hydrogenation Reactions Catalysed by Iridium(III) Bisâ€Nâ€heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2015, 2015, 4388-4395.	2.0	17
68	A DFT study of the role of water in the rhodium-catalyzed hydrogenation of acetone. Chemical Communications, 2016, 52, 13881-13884.	4.1	17
69	Theoretical Study on the Reaction Mechanism of VO ₂ ⁺ with Propyne in Gas Phase. Journal of Physical Chemistry A, 2008, 112, 1808-1816.	2.5	16
70	Synthesis and structure of a paramagnetic Mo3S4 incomplete cuboidal cluster with seven cluster skeletal electrons. Dalton Transactions, 2012, 41, 14031.	3.3	16
71	Mechanism Switch in Mannichâ€Type Reactions: ELF and NCI Topological Analyses of the Reaction between Nitrones and Lithium Enolates. European Journal of Organic Chemistry, 2015, 2015, 4143-4152.	2.4	16
72	Oxidative Addition of the N–H Bond of Ammonia to Iridium Bis(phosphane) Complexes: A Combined Experimental and Theoretical Study. Organometallics, 2016, 35, 720-731.	2.3	16

#	Article	IF	CITATIONS
73	Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Topics in Catalysis, 2018, 61, 267-275.	2.8	16
74	On the Role of Ferromagnetic Interactions in Highly Active Moâ€Based Catalysts for Ammonia Synthesis. ChemPhysChem, 2018, 19, 2843-2847.	2.1	16
75	Catalytic Hydrodechlorination of Benzyl Chloride Promoted by Rh– <i>N</i> â€heterocyclic Carbene Catalysts. ChemSusChem, 2015, 8, 495-503.	6.8	15
76	Efficient preparation of carbamates by Rh-catalysed oxidative carbonylation: unveiling the role of the oxidant. Chemical Communications, 2017, 53, 404-407.	4.1	15
77	Iridium complexes as catalysts in the hydrogen transfer of isopropanol to acetophenone: Ligand effects and DFT studies. Inorganica Chimica Acta, 2015, 436, 146-151.	2.4	14
78	A bonding evolution theory study on the catalytic Noyori hydrogenation reaction. Molecular Physics, 2019, 117, 1315-1324.	1.7	14
79	Metal–Ligand Cooperative Proton Transfer as an Efficient Trigger for Rhodium-NHC-Pyridonato Catalyzed <i>gem</i> -Specific Alkyne Dimerization. ACS Catalysis, 2021, 11, 7553-7567.	11.2	14
80	Amido Complexes of Iridium with a PNP Pincer Ligand: Reactivity toward Alkynes and Hydroamination Catalysis. Organometallics, 2018, 37, 2618-2629.	2.3	13
81	CNH ₂ Bond Formation Mediated by Iridium Complexes. Angewandte Chemie - International Edition, 2014, 53, 9627-9631.	13.8	12
82	A theoretical study on the thermal ring opening rearrangement of 1H-bicyclo[3.1.0]hexa-3,5-dien-2-one: a case of two state reactivity. Physical Chemistry Chemical Physics, 2009, 11, 7189.	2.8	11
83	Sulfur-Based Redox Reactions in Mo ₃ S ₇ ⁴⁺ and Mo ₃ S ₄ ⁴⁺ Clusters Bearing Halide and 1,2-Dithiolene Ligands: a Mass Spectrometric and Density Functional Theory Study. Inorganic Chemistry, 2010, 49, 8045-8055.	4.0	11
84	<i>Ab initio</i> molecular dynamics on the electronic Boltzmann equilibrium distribution. New Journal of Physics, 2010, 12, 083064.	2.9	11
85	Cubane-Type Mo ₃ FeS ₄ ^{4+,5+} Complexes Containing Outer Diphosphane Ligands: Ligand Substitution Reactions, Spectroscopic Studies, and Electronic Structure. Inorganic Chemistry, 2012, 51, 10512-10521.	4.0	11
86	Synthesis, molecular and electronic structure of an incomplete cuboidal Re3S4 cluster with an unusual quadruplet ground state. Chemical Communications, 2012, 48, 2713.	4.1	11
87	Heterolytic H2 activation on a carbene-ligated rhodathiaborane promoted by isonido-nido cage opening. Chemical Communications, 2013, 49, 9863.	4.1	11
88	Hydride–Rhodium(III)- <i>N</i> -Heterocyclic Carbene Catalyst for Tandem Alkylation/Alkenylation via C–H Activation. ACS Catalysis, 2019, 9, 9372-9386.	11.2	11
89	Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorganic Chemistry, 2021, 60, 15497-15508.	4.0	11
90	Spin polarisation in dual catalysts for the oxygen evolution and reduction reactions. Current Opinion in Electrochemistry, 2021, 30, 100798.	4.8	11

#	Article	IF	CITATIONS
91	Human riboflavin kinase: Speciesâ€specific traits in the biosynthesis of the FMN cofactor. FASEB Journal, 2020, 34, 10871-10886.	0.5	10
92	Synthesis and Molecular and Electronic Structures of a Series of Mo ₃ CoSe ₄ Cluster Complexes with Three Different Metal Electron Populations. Inorganic Chemistry, 2008, 47, 3661-3668.	4.0	9
93	Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes: its role in the catalytic hydrosilylation of ketones. Catalysis Science and Technology, 2015, 5, 1878-1887.	4.1	9
94	Localizing electron density errors in density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 20927-20938.	2.8	9
95	Tunable from Blue to Red Emissive Composites and Solids of Silver Diphosphane Systems with Higher Quantum Yields than the Diphosphane Ligands. Inorganic Chemistry, 2020, 59, 14447-14456.	4.0	9
96	Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors. Dalton Transactions, 2022, 51, 4386-4393.	3.3	8
97	Rhodiumâ€NHCâ€Catalyzed <i>gem</i> â€Specific <i>O</i> â€Selective Hydropyridonation of Terminal Alkynes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
98	New insights into the chemistry of di- and trimetallic iron dithiolene derivatives. Structural, Mössbauer, magnetic, electrochemical and theoretical studies. Dalton Transactions, 2014, 43, 13187-13195.	3.3	7
99	2-Pyridone-stabilized iridium silylene/silyl complexes: structure and QTAIM analysis. Dalton Transactions, 2020, 49, 17665-17673.	3.3	7
100	Rh Complexes with Pincer Carbene CNC Lutidine-Based Ligands: Reactivity Studies toward H2 Addition. Organometallics, 0, , .	2.3	7
101	Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study. International Journal of Molecular Sciences, 2016, 17, 1131.	4.1	6
102	Alkoxycarbonylation of α,β-unsaturated amides catalyzed by palladium(<scp>ii</scp>) complexes: a DFT study of the mechanism. RSC Advances, 2016, 6, 8440-8448.	3.6	6
103	Iridium–NSiN catalyzed formation of silylphosphinecarboxylates from the reaction of CO ₂ with P(SiMe ₃)R ₂ (R = Ph, Cy). Catalysis Science and Technology, 2017, 7, 1372-1378.	4.1	6
104	Non-adiabatic effects within a single thermally averaged potential energy surface: Thermal expansion and reaction rates of small molecules. Journal of Chemical Physics, 2012, 137, 22A533.	3.0	5
105	Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction. Physical Chemistry Chemical Physics, 2017, 19, 13622-13628.	2.8	5
106	Towards the competent conformation for catalysis in the ferredoxin-NADP+ reductase from the Brucella ovis pathogen. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148058.	1.0	5
107	Experimental and Computational Studies on the Reactivity and Binding Mode of Thiophene with N-Heterocyclic Carbene Iridium Complexes. Organometallics, 2016, 35, 569-578.	2.3	4
108	Nucleophilic Reactivity at a â•€H Arm of a Lutidine-Based CNC/Rh System: Unusual Alkyne and CO ₂ Activation. Inorganic Chemistry, 2022, 61, 7120-7129.	4.0	4

#	Article	IF	CITATIONS
109	Combined ¹³ C NMR and DFT/GIAO studies of the polyketides Aurasperone A and Fonsecinone A. International Journal of Quantum Chemistry, 2008, 108, 2408-2416.	2.0	3
110	2,5â€Norbornadiene C–C Coupling Reactions Mediated by Iridium Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 3489-3499.	2.0	3
111	Reactivity of the parent amido complexes of iridium with olefins: C–NH ₂ bond formation versus C–H activation. Dalton Transactions, 2017, 46, 11459-11468.	3.3	3
112	Iridium catalysts featuring amine-containing ligands for the dehydrogenation of formic acid. Journal of Organometallic Chemistry, 2020, 916, 121259.	1.8	3
113	Fluorescence Detection by Intensity Change Based Sensors: A Theoretical Model. Journal of Fluorescence, 2012, 22, 381-389.	2.5	2
114	C–N Bond Coupling Reactions of Ammonia with Acetone Promoted by Iridium and Rhodium Complexes: Experimental and DFT Studies. European Journal of Inorganic Chemistry, 2016, 2016, 5347-5355.	2.0	2
115	Synthesis and reactivity at the Ir- ^{Me} Tpm platform: from κ ¹ - <i>N</i> coordination to κ ³ - <i>N</i> based organometallic chemistry. Dalton Transactions, 2019, 48, 6455-6463.	3.3	2
116	A Bond Charge Model Ansatz for Intrinsic Bond Energies: Application to C–C Bonds. Journal of Physical Chemistry A, 2020, 124, 176-184.	2.5	2
117	Rhodiumâ€NHCâ€Catalyzed <i>gem</i> â€Specific <i>O</i> â€Selective Hydropyridonation of Terminal Alkynes. Angewandte Chemie, 0, , .	2.0	0