Francisco J Sayago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575162/publications.pdf Version: 2024-02-01

EPANCISCO I SAVACO

#	Article	IF	CITATIONS
1	New approaches towards the synthesis of 1,2,3,4-tetrahydro isoquinoline-3-phosphonic acid (TicP). Amino Acids, 2021, 53, 451-459.	2.7	6
2	Synthesis and biological activity of dehydrophos derivatives. Organic and Biomolecular Chemistry, 2019, 17, 1097-1112.	2.8	3
3	1â€Aminovinylphosphonate Esters as Substrates for the Dielsâ€Alder Reaction: First Synthetic and Theoretical Study. European Journal of Organic Chemistry, 2019, 2019, 1268-1272.	2.4	3
4	An Improved Synthesis of the Antibiotic Dehydrophos. European Journal of Organic Chemistry, 2018, 2018, 3965-3973.	2.4	5
5	Synthesis of trans-fused Octahydroisoindole-1-carboxylic Acids. Letters in Organic Chemistry, 2018, 15, 404-411.	0.5	3
6	Stereoselective Synthesis of α-Amino-H-phosphinic Acids and Derivatives. Synthesis, 2017, 49, 987-997.	2.3	7
7	Ru-catalyzed C H functionalization of phenylglycine derivatives: Synthesis of isoquinoline-1-carboxylates and isoindoline-1-carboxylates. Journal of Molecular Catalysis A, 2017, 426, 407-418.	4.8	16
8	Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives. Molecules, 2016, 21, 1141.	3.8	24
9	First Synthesis of (<i>R</i>)―and (<i>S</i>)â€1,2,3,4â€Tetrahydroisoquinolineâ€3â€phosphonic Acid (Tic ^P) Using a Pictet–Spengler Reaction. European Journal of Organic Chemistry, 2016, 2016, 2711-2719.	2.4	13
10	Lipase-catalyzed dynamic kinetic resolution of dimethyl (1,3-dihydro-2H-isoindol-1-yl)phosphonate. Tetrahedron, 2016, 72, 7311-7316.	1.9	7
11	Enzymatic and chromatographic resolution procedures applied to the synthesis of the phosphoproline enantiomers. Tetrahedron: Asymmetry, 2015, 26, 1469-1477.	1.8	10
12	Synthesis of [<i>c</i>]â€Fused Bicyclic Proline Analogues. European Journal of Organic Chemistry, 2015, 2015, 1633-1658.	2.4	8
13	An update on the stereoselective synthesis of $\hat{I}\pm$ -aminophosphonic acids and derivatives. Tetrahedron, 2015, 71, 1745-1784.	1.9	82
14	First Practical and Efficient Synthesis of 3â€Phosphorylated β arboline Derivatives Using the Pictet–Spengler Reaction. European Journal of Organic Chemistry, 2015, 2015, 1084-1091.	2.4	11
15	Remote Substituent Effects on the Stereoselectivity and Organocatalytic Activity of Densely Substituted Unnatural Proline Esters in Aldol Reactions. European Journal of Organic Chemistry, 2015, 2015, 2503-2516.	2.4	23
16	Amide–triazole isosteric substitution for tuning self-assembly and incorporating new functions into soft supramolecular materials. Chemical Communications, 2015, 51, 5294-5297.	4.1	45
17	Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Organic Letters, 2014, 16, 1422-1425.	4.6	17
18	Cyclopalladation and Reactivity of Amino Esters through CH Bond Activation: Experimental, Kinetic, and Density Functional Theory Mechanistic Studies. Chemistry - A European Journal, 2013, 19, 17398-17412.	3.3	30

FRANCISCO J SAYAGO

#	Article	IF	CITATIONS
19	Engineering strategy to improve peptide analogs: from structure-based computational design to tumor homing. Journal of Computer-Aided Molecular Design, 2013, 27, 31-43.	2.9	14
20	Synthesis of quaternary α-aminophosphonic acids. Tetrahedron, 2012, 68, 6369-6412.	1.9	82
21	Dynamic Kinetic Resolution of 1,3-Dihydro-2H-isoindole-1-carboxylic Acid Methyl Ester: Asymmetric Transformations toward Isoindoline Carbamates. Organic Letters, 2012, 14, 1696-1699.	4.6	28
22	Quantum-chemical predictions of redox potentials of carbamates in methanol. Physical Chemistry Chemical Physics, 2011, 13, 17696.	2.8	16
23	Access to the <i>cis</i> â€Fused Stereoisomers of Proline Analogues Containing an Octahydroindole Core. European Journal of Organic Chemistry, 2011, 2011, 2011-2028.	2.4	32
24	Stereodivergent Synthesis of Two Novel αâ€Aminophosphonic Acids Characterised by a <i>cis</i> â€Fused Octahydroindole System. European Journal of Organic Chemistry, 2011, 2011, 3074-3081.	2.4	27
25	Synthesis of Phosphoproline Derivatives with an Octahydroisoindole Structure. European Journal of Organic Chemistry, 2011, 2011, 6732-6738.	2.4	28
26	Practical access to the proline analogs (<i>S</i> , <i>S</i>)―and (<i>R</i> , <i>R</i> , <i>R</i>)â€2â€methyloctahydroindoleâ€2â€carboxylic acids by HPLC enantioseparation. Chirality, 2011, 23, 507-513.	2.6	15
27	Efficient access to (1H)-isoindolin-1-one-3-carboxylic acid derivatives by orthopalladation and carbonylation of methyl arylglycinate substrates. Tetrahedron, 2011, 67, 4185-4191.	1.9	34
28	Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116, 2847-2856.	1.4	149
29	A straightforward route to enantiopure α-substituted derivatives of (2S,3aS,7aS)-octahydroindole-2-carboxylic acid. Tetrahedron, 2009, 65, 5174-5180.	1.9	10
30	Towards the stereoselective synthesis of α-methylated (2S,3aS,7aS)-octahydroindole-2-carboxylic acid. Tetrahedron: Asymmetry, 2008, 19, 2763-2766.	1.8	4
31	Versatile methodology for the synthesis and α-functionalization of (2R,3aS,7aS)-octahydroindole-2-carboxylic acid. Tetrahedron, 2008, 64, 84-91.	1.9	18
32	Efficient access to enantiomerically pure cyclic α-amino esters through a lipase-catalyzed kinetic resolution. Tetrahedron: Asymmetry, 2008, 19, 1714-1719.	1.8	22
33	Stereocontrolled synthesis of iminocyclitols with an ether bridge. Tetrahedron, 2007, 63, 4695-4702.	1.9	6
34	Efficient access to N-protected derivatives of (R,R,R)- and (S,S,S)-octahydroindole-2-carboxylic acid by HPLC resolution. Tetrahedron: Asymmetry, 2007, 18, 2358-2364.	1.8	18
35	Expeditious synthesis of sulfoazetidine spiro-C-glycosides from ketose acetals. Tetrahedron, 2006, 62, 915-921.	1.9	18
36	Anhydroazasugars as key intermediates in the stereocontrolled preparation of azasugars and their ethyl thioglycosides. Tetrahedron: Asymmetry, 2004, 15, 603-615.	1.8	12

#	Article	IF	CITATIONS
37	Ring contraction of glycopyranosyl enamines: an easy route to furanoid thioglycosides of 5-aminosugars. Tetrahedron: Asymmetry, 2004, 15, 2003-2010.	1.8	3
38	d-Ribofuranosylenamine: a versatile starting material for preparing azasugar thioglycosides and building blocks for thioureylene-di-nucleosides. Tetrahedron: Asymmetry, 2004, 15, 3783-3789.	1.8	11
39	Stereoselective synthesis of azasugar thioglycosides. Tetrahedron Letters, 2003, 44, 6605-6608.	1.4	10
40	An easy route to seven-membered iminocyclitols from aldohexopyranosyl enamines. Tetrahedron: Asymmetry, 2002, 13, 1743-1753.	1.8	37