
Daniel Plaza-Bonilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9574403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment, 2017, 238, 5-24.	2.5	193
2	Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil and Tillage Research, 2014, 139, 19-22.	2.6	131
3	Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 2015, 35, 1319-1334.	2.2	113
4	Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Research, 2016, 189, 59-67.	2.3	109
5	Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. European Journal of Agronomy, 2017, 82, 331-341.	1.9	98
6	Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agriculture, Ecosystems and Environment, 2014, 189, 43-52.	2.5	87
7	Cover crops mitigate nitrate leaching in cropping systems including grain legumes: Field evidence and model simulations. Agriculture, Ecosystems and Environment, 2015, 212, 1-12.	2.5	84
8	Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma, 2013, 193-194, 76-82.	2.3	72
9	Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil, 2014, 376, 31-41.	1.8	62
10	Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses. Soil and Tillage Research, 2016, 156, 33-43.	2.6	61
11	Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. Plant and Soil, 2014, 381, 111-130.	1.8	54
12	Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics. Soil and Tillage Research, 2012, 120, 32-39.	2.6	52
13	Soil Carbon Dioxide Flux and Organic Carbon Content: Effects of Tillage and Nitrogen Fertilization. Soil Science Society of America Journal, 2011, 75, 1874-1884.	1.2	51
14	Tillage effects on soil aggregation and soil organic carbon profile distribution under Mediterranean semi-arid conditions. Soil Use and Management, 2010, 26, 465-474.	2.6	50
15	Long-term no-till as a means to maintain soil surface structure in an agroecosystem transformed into irrigation. Soil and Tillage Research, 2017, 174, 221-230.	2.6	45
16	Carbon footprint of cropping systems with grain legumes and cover crops: A case-study in SW France. Agricultural Systems, 2018, 167, 92-102.	3.2	45
17	Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agriculture, Ecosystems and Environment, 2020, 287, 106687.	2.5	40
18	Tillage and nitrogen fertilization in irrigated maize: key practices to reduce soil CO2 and CH4 emissions. Soil and Tillage Research, 2019, 191, 29-36.	2.6	39

#	Article	IF	CITATIONS
19	Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agricultural Water Management, 2019, 221, 303-311.	2.4	38
20	No-tillage reduces long-term yield-scaled soil nitrous oxide emissions in rainfed Mediterranean agroecosystems: A field and modelling approach. Agriculture, Ecosystems and Environment, 2018, 262, 36-47.	2.5	37
21	Tillage and irrigation system effects on soil carbon dioxide (CO2) and methane (CH4) emissions in a maize monoculture under Mediterranean conditions. Soil and Tillage Research, 2020, 196, 104488.	2.6	34
22	Soil Aggregate Stability as Affected by Fertilization Type under Semiarid Noâ€Tillage Conditions. Soil Science Society of America Journal, 2013, 77, 284-292.	1.2	33
23	Winter cereal root growth and aboveground–belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant and Soil, 2014, 374, 925-939.	1.8	33
24	Fertilization Scenarios in Sprinklerâ€Irrigated Corn under Mediterranean Conditions: Effects on Greenhouse Gas Emissions. Soil Science Society of America Journal, 2016, 80, 662-671.	1.2	30
25	Precipitation gradient and crop management affect N2O emissions: Simulation of mitigation strategies in rainfed Mediterranean conditions. Agriculture, Ecosystems and Environment, 2017, 238, 89-103.	2.5	26
26	Soil management effects on greenhouse gases production at the macroaggregate scale. Soil Biology and Biochemistry, 2014, 68, 471-481.	4.2	24
27	Nitrogen fertilization strategies for improved Mediterranean rainfed wheat and barley performance and water and nitrogen use efficiency. European Journal of Agronomy, 2021, 124, 126238.	1.9	22
28	Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions?. Field Crops Research, 2017, 203, 74-85.	2.3	21
29	Simulating climate change and land use effects on soil nitrous oxide emissions in Mediterranean conditions using the Daycent model. Agriculture, Ecosystems and Environment, 2017, 238, 78-88.	2.5	21
30	Diversifying crop rotations enhances agroecosystem services and resilience. Advances in Agronomy, 2022, , 299-335.	2.4	21
31	The first calibration and evaluation of the STICS soil-crop model on chickpea-based intercropping system under Mediterranean conditions. European Journal of Agronomy, 2022, 133, 126449.	1.9	16
32	Is it feasible to reduce tillage and N use while improving maize yield in irrigated Mediterranean agroecosystems?. European Journal of Agronomy, 2019, 109, 125919.	1.9	15
33	Soil sealing and soil water content under noâ€ŧillage and conventional tillage in irrigated corn: Effects on grain yield. Hydrological Processes, 2019, 33, 2095-2109.	1.1	14
34	Irrigation and tillage effects on soil nitrous oxide emissions in maize monoculture. Agronomy Journal, 2020, 112, 56-71.	0.9	12
35	Best management practices of tillage and nitrogen fertilization in Mediterranean rainfed conditions: Combining field and modelling approaches. European Journal of Agronomy, 2016, 79, 119-130.	1.9	9
36	Soil organic carbon sequestration when converting a rainfed cropping system to irrigated corn under different tillage systems and N fertilizer rates. Soil Science Society of America Journal, 2020, 84, 1219-1232.	1.2	9

DANIEL PLAZA-BONILLA

#	Article	IF	CITATIONS
37	Soil gas diffusivity and pore continuity dynamics under different tillage and crop sequences in an irrigated Mediterranean area. Soil and Tillage Research, 2022, 221, 105409.	2.6	8
38	Delayed Sowing Improved Barley Yield in a Noâ€Till Rainfed Mediterranean Agroecosystem. Agronomy Journal, 2017, 109, 1249-1260.	0.9	7
39	Pig slurry incorporation with tillage does not reduce short-term soil CO 2 fluxes. Soil and Tillage Research, 2018, 179, 82-85.	2.6	5
40	The sensitivity of C and N mineralization to soil water potential varies with soil characteristics: Experimental evidences to fine-tune models. Geoderma, 2022, 409, 115644.	2.3	2
41	Soil Carbon Dynamics Under Different Land Uses in Dryland Mediterranean Conditions. , 2018, , 39-52.		1
42	Managing Drylands for Sustainable Agriculture. , 2019, , 529-556.		1
43	No-Till Farming Systems to Reduce Nitrous Oxide Emissions and Increase Methane Uptake. , 2020, , 319-335.		0