
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9574040/publications.pdf Version: 2024-02-01

Ηνιιν-Πο Υιιν

#	Article	IF	CITATIONS
1	Compressive behavior of reinforced concrete columns with recycled aggregate under uniaxial loading. Engineering Structures, 2012, 41, 285-293.	2.6	164
2	Influence of recycled coarse aggregates on the bond behavior of deformed bars in concrete. Engineering Structures, 2013, 48, 133-143.	2.6	121
3	Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate. Materials & Design, 2013, 51, 742-750.	5.1	108
4	Acoustic emission activities and damage evaluation of reinforced concrete beams strengthened with CFRP sheets. NDT and E International, 2010, 43, 615-628.	1.7	83
5	Evaluation of the bond behavior of steel reinforcing bars in recycled fine aggregate concrete. Cement and Concrete Composites, 2014, 46, 8-18.	4.6	78
6	Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Composite Structures, 2018, 185, 203-211.	3.1	75
7	Development of recycled strain-hardening cement-based composite (SHCC) for sustainable infrastructures. Composites Part B: Engineering, 2012, 43, 627-635.	5.9	65
8	Bond strength prediction for deformed steel rebar embedded in recycled coarse aggregate concrete. Materials and Design, 2015, 83, 257-269.	3.3	61
9	Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete. Thermochimica Acta, 2015, 613, 100-107.	1.2	58
10	Bond and cracking behavior of lap-spliced reinforcing bars embedded in hybrid fiber reinforced strain-hardening cementitious composite (SHCC). Composites Part B: Engineering, 2017, 108, 35-44.	5.9	58
11	Flexural performance of reinforced recycled aggregate concrete beams. Magazine of Concrete Research, 2012, 64, 837-848.	0.9	54
12	In-plane shear behavior of insulated precast concrete sandwich panels reinforced with corrugated GFRP shear connectors. Composites Part B: Engineering, 2015, 79, 419-429.	5.9	54
13	Effects of transverse reinforcement on flexural behaviour of high-strength concrete columns. Engineering Structures, 2004, 26, 1-12.	2.6	53
14	Corrosion protection performance of High Performance Fiber Reinforced Cement Composites as a repair material. Cement and Concrete Composites, 2010, 32, 411-420.	4.6	50
15	Effects of crack properties and water-cement ratio on the chloride proofing performance of cracked SHCC suffering from chloride attack. Cement and Concrete Composites, 2016, 69, 18-27.	4.6	49
16	Effect of accelerated freeze–thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites (SHCCs). Composites Part B: Engineering, 2013, 52, 11-20.	5.9	46
17	Mechanical performance of corroded RC member repaired by HPFRCC patching. Construction and Building Materials, 2013, 39, 139-147.	3.2	45
18	Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete. Materials, 2015, 8, 7309-7321.	1.3	45

#	Article	IF	CITATIONS
19	Mechanical properties of high-performance hybrid-fibre-reinforced cementitious composites (HPHFRCCs). Magazine of Concrete Research, 2007, 59, 257-271.	0.9	44
20	The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials, 2019, 12, 2105.	1.3	44
21	Attempts to apply high performance fiber-reinforced cement composite (HPFRCC) to infrastructures in South Korea. Composite Structures, 2014, 109, 211-223.	3.1	41
22	Seismic behaviour of steel coupling beams linking reinforced concrete shear walls. Engineering Structures, 2005, 27, 1024-1039.	2.6	40
23	Seismic behaviour of coupling beams in a hybrid coupled shear walls. Journal of Constructional Steel Research, 2005, 61, 1492-1524.	1.7	36
24	Flexural behavior and crack-damage mitigation of plain concrete beam with a strain-hardening cement composite (SHCC) layer at tensile region. Composites Part B: Engineering, 2013, 45, 377-387.	5.9	35
25	Effect of fine crack width and water cement ratio of SHCC on chloride ingress and rebar corrosion. Cement and Concrete Composites, 2017, 80, 235-244.	4.6	35
26	Crack damage mitigation and shear behavior of shear-dominant reinforced concrete beams repaired with strain-hardening cement-based composite. Composites Part B: Engineering, 2015, 79, 6-19.	5.9	34
27	Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites (DFRCCs) for durable infrastructures. Cold Regions Science and Technology, 2012, 78, 82-88.	1.6	33
28	Tensile behavior of synthetic fiber-reinforced strain-hardening cement-based composite (SHCC) after freezing and thawing exposure. Cold Regions Science and Technology, 2011, 67, 49-57.	1.6	32
29	Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems. Nuclear Engineering and Design, 2006, 236, 2474-2484.	0.8	29
30	Design properties of insulated precast concrete sandwich panels with composite shear connectors. Composites Part B: Engineering, 2019, 157, 36-42.	5.9	29
31	Effects of fibre-reinforced cement composites' ductility on the seismic performance of short coupling beams. Magazine of Concrete Research, 2008, 60, 223-233.	0.9	28
32	Acoustic emission activity of CFRP-strengthened reinforced concrete beams after freeze–thaw cycling. Cold Regions Science and Technology, 2015, 110, 47-58.	1.6	28
33	Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	27
34	Dynamic impact characteristics of KN-18 SNF transport cask – Part 1: An advanced numerical simulation and validation technique. Annals of Nuclear Energy, 2010, 37, 546-559.	0.9	26
35	Shear strength of the connection between a steel coupling beam and a reinforced concrete shear wall in a hybrid wall system. Journal of Constructional Steel Research, 2005, 61, 912-941.	1.7	25
36	Crack-damage mitigation and flexural behavior of flexure-dominant reinforced concrete beams repaired with strain-hardening cement-based composite. Composites Part B: Engineering, 2011, 42, 645-656.	5.9	23

#	Article	IF	CITATIONS
37	Seismic performance of pseudo strain-hardening cementitious composite coupling beams with different reinforcement details. Composites Part B: Engineering, 2011, 42, 1427-1445.	5.9	23
38	Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC). Materials, 2014, 7, 1422-1440.	1.3	21
39	Thermal and Mechanical Behaviors of Concrete with Incorporation of Strontium-Based Phase Change Material (PCM). International Journal of Concrete Structures and Materials, 2019, 13, .	1.4	20
40	Dynamic impact characteristics of KN-18 SNF transport cask – Part 2: Sensitivity analysis of modeling and design parameters. Annals of Nuclear Energy, 2010, 37, 560-571.	0.9	19
41	Mechanical properties of ready-mixed concrete incorporating fine recycled aggregate. Magazine of Concrete Research, 2015, 67, 621-632.	0.9	18
42	The effects of PE and PVA fiber and water cement ratio on chloride penetration and rebar corrosion protection performance of cracked SHCC. Construction and Building Materials, 2018, 178, 372-383.	3.2	16
43	Influence of Casting Temperature on the Heat of Hydration in Mass Concrete Foundation with Ternary Cements. Applied Mechanics and Materials, 0, 525, 478-481.	0.2	15
44	Microstructure and Mechanical Properties of Cement Mortar Containing Phase Change Materials. Applied Sciences (Switzerland), 2019, 9, 943.	1.3	15
45	Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression. Results in Physics, 2020, 18, 103199.	2.0	15
46	Insulation Type Effect on the Direct Shear Behavior of Concrete Sandwich Panel (CSP) with Non-Shear Connectors. Advanced Materials Research, 0, 663, 154-158.	0.3	14
47	Bonding Behavior of Deformed Steel Rebars in Sustainable Concrete Containing both Fine and Coarse Recycled Aggregates. Materials, 2017, 10, 1082.	1.3	14
48	The bearing strength of steel coupling beam-reinforced concrete shear wall connections. Nuclear Engineering and Design, 2006, 236, 77-93.	0.8	13
49	Evaluation of Impact Resistance of Steel Fiber-Reinforced Concrete Panels Using Design Equations. ACI Structural Journal, 2017, 114, .	0.3	13
50	Bearing strength of steel coupling beam connections embedded reinforced concrete shear walls. Engineering Structures, 2006, 28, 1319-1334.	2.6	12
51	Use of steel fibers as transverse reinforcement in diagonally reinforced coupling beams with normal- and high-strength concrete. Construction and Building Materials, 2018, 187, 1020-1030.	3.2	12
52	Flexural Behavior of Reinforced Recycled Aggregate Concrete Beams. Journal of the Korea Concrete Institute, 2009, 21, 431-439.	0.1	12
53	Crack-damage mitigation of RC one-way slabs with a strain-hardening cement-based composite layer. Magazine of Concrete Research, 2011, 63, 493-509.	0.9	11
54	Hysteretic Behavior of Conventionally Reinforced Concrete Coupling Beams in Reinforced Concrete Coupled Shear Wall. International Journal of Concrete Structures and Materials, 2017, 11, 599-616.	1.4	11

#	Article	IF	CITATIONS
55	Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC). Journal of the Korea Concrete Institute, 2010, 22, 617-624.	0.1	11
56	Influence of Fiber Volume Fraction and Aggregate Size on Flexural Behavior of High Strength Steel Fiber-Reinforced Concrete (SFRC). Applied Mechanics and Materials, 2013, 372, 223-226.	0.2	9
57	Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites. Scientific World Journal, The, 2013, 2013, 1-11.	0.8	9
58	SHEAR STRENGTH OF REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS WITHOUT SHEAR REINFORCEMENTS. Journal of Civil Engineering and Management, 2016, 23, 76-84.	1.9	9
59	Effects of stiffening sealant thickness on the structural performance of structural silicone glazing (SSG) sealant connections in curtain wall systems. Archives of Civil and Mechanical Engineering, 2017, 17, 65-74.	1.9	9
60	Highâ€velocity impact experiment of concrete panels reinforced with crimped wire mesh and steel fibers. Structural Concrete, 2018, 19, 1818-1828.	1.5	9
61	Effects of Reinforcing Fiber Strength on Mechanical Properties of High-Strength Concrete. Fibers, 2019, 7, 93.	1.8	9
62	Penetration of pressure-injected lithium nitrite in concrete and ASR mitigating effect. Cement and Concrete Composites, 2020, 114, 103709.	4.6	9
63	EVALUATION OF DEFORMATION CAPACITY FOR RC T-SHAPED CANTILEVER WALLS. Journal of Earthquake Engineering, 2004, 8, 397-414.	1.4	8
64	Demonstration of structural performance of IP-2 packages by advanced analytical simulation and full-scale drop test. Nuclear Engineering and Design, 2010, 240, 639-655.	0.8	8
65	Shear performance of precast SHCC infill walls for seismic retrofitting of non-ductile frames. Magazine of Concrete Research, 2010, 62, 925-934.	0.9	8
66	Shear strength of pseudo strain hardening cementitious composite coupling beam. Composites Part B: Engineering, 2011, 42, 429-443.	5.9	8
67	Compressive Properties of High Strength Steel Fiber Reinforced Concrete with Different Fiber Volume Fractions. Applied Mechanics and Materials, 0, 372, 215-218.	0.2	8
68	Feasibility of Using High-Performance Steel Fibre Reinforced Concrete for Simplifying Reinforcement Details of Critical Members. International Journal of Polymer Science, 2015, 2015, 1-12.	1.2	8
69	The Effect of Shrinkage-Compensation on the Performance of Strain-Hardening Cement Composite (SHCC). Sustainability, 2019, 11, 1453.	1.6	8
70	Shear Behavior of Squat Steel Fiber Reinforced Concrete (SFRC) Shear Walls with Vertical Slits. Applied Mechanics and Materials, 0, 372, 207-210.	0.2	7
71	Shear behavior of strain-hardening cement composite walls under quasi-static cyclic loading. Engineering Structures, 2017, 143, 398-409.	2.6	7
72	Research trends and design guidelines for fire resistance of structural concrete in South Korea. Magazine of Concrete Research, 2017, 69, 347-364.	0.9	7

#	Article	IF	CITATIONS
73	Direct Shear Responses of Insulated Concrete Sandwich Panels with GFRP Shear Connectors. Applied Mechanics and Materials, 0, 204-208, 803-806.	0.2	6
74	Effect of Fiber Volume Fraction on Compressive and Flexural Properties of High-Strength Steel Fiber Reinforced Concrete. Applied Mechanics and Materials, 0, 597, 296-299.	0.2	6
75	Characteristics of structural concrete containing fluorosilicate-based admixture (FBA) for improving water-tightness. Construction and Building Materials, 2015, 74, 241-248.	3.2	6
76	Influence of bending cracks on the distribution of rebar corrosion in SHCC. Cement and Concrete Composites, 2021, 122, 104146.	4.6	6
77	Effects of Steel Fiber Strength and Aspect Ratio on Mechanical Properties of High-Strength Concrete. Journal of the Korea Concrete Institute, 2018, 30, 197-205.	0.1	6
78	Effect of GFRP Shear Ties on Shear Behavior of Interfaces between Precast Concrete Panel and Extruded Polystyrene Special Insulation. Advanced Materials Research, 0, 658, 46-49.	0.3	5
79	Properties of strain-hardening cement composites with superabsorbent polymer particles. Magazine of Concrete Research, 2019, 71, 437-448.	0.9	5
80	Seismic Performance Assessments of RC Frame Structures Strengthened by External Precast Wall Panel. Applied Sciences (Switzerland), 2020, 10, 1749.	1.3	5
81	Strain Transfer of Fiber Bragg Grating Sensor Externally Bonded to FRP Strip for Structural Monitoring after Reinforcement. Materials, 2021, 14, 4382.	1.3	5
82	Experimental Study on Engineering Properties of Concrete Using Fluosilicates Based Composite. Journal of the Korea Concrete Institute, 2005, 17, 769-774.	0.1	5
83	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 397.	1.4	4
84	Flexural Toughness of Sprayable Strain-Hardening Cement Composite (SHCC) for Seismic Retrofit of Non-Ductile Reinforced Concrete Frames. Advanced Materials Research, 0, 658, 34-37.	0.3	4
85	The Relationship of Compressive Strength and Tensile Strength of High Performance Concrete. Key Engineering Materials, 0, 627, 385-388.	0.4	4
86	Interface Bond Characterization between Fiber and Cementitious Matrix. International Journal of Polymer Science, 2015, 2015, 1-11.	1.2	4
87	Effects of Shrinkage-Compensation on Mechanical Properties and Repair Performance of Strain-Hardening Cement Composite Materials. Advances in Civil Engineering, 2018, 2018, 1-12.	0.4	4
88	Effect of superabsorbent polymer (SAP) on the performance of polyvinyl alcohol (PVA) fiber-reinforced strain-hardening cement composites. Contemporary Engineering Sciences, 0, 8, 1361-1369.	0.2	4
89	Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials. Journal of the Korea Concrete Institute, 2010, 22, 727-736.	0.1	4
90	Tensile and Strain-sensing Properties of Hybrid Fibers Reinforced Strain-hardening Cement Composite (Hy-SHCC) with Different Carbon Nanotube (CNT) Dosages. Journal of the Korea Concrete Institute, 2020, 32, 285-293.	0.1	4

#	Article	IF	CITATIONS
91	Shear Strengthening of High Strength Concrete Beams That Contain Hooked-End Steel Fiber. Materials, 2022, 15, 17.	1.3	4
92	Shear Reinforcing Influence of GFRP Shear Connectors in the Concrete Sandwich Wall Panel (CSWP) for Exterior Envelopes of Buildings. Advanced Materials Research, 0, 658, 38-41.	0.3	3
93	Effect of Cement Matrix's Type on the Shear Performance of Lightly Reinforced Squat Shear Walls Subjected to Cyclic Loading. Advanced Materials Research, 2013, 658, 42-45.	0.3	3
94	Thermal Analysis of Hydration Heat in Mass Concrete with Different Cement Binder Proportions. Applied Mechanics and Materials, 2013, 372, 199-202.	0.2	3
95	Strengthening methods for reinforced concrete infrastructure using FRP composites in Korea. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2018, 171, 898-907.	0.4	3
96	Installation Technique of Fiber Optic Sensor into FRP Used as NSM Structural Strengthening System. Sustainability, 2020, 12, 8501.	1.6	3
97	Sulfuric Acid Resistance of CNT-Cementitious Composites. Applied Sciences (Switzerland), 2021, 11, 2226.	1.3	3
98	Ductility and Bond Characteristics of Steel Fiber-Reinforced Concrete Members Subjected to Shear. Advanced Science Letters, 2012, 13, 491-494.	0.2	3
99	The effect of mineral admixture on the compressive strength development of concrete. Contemporary Engineering Sciences, 0, 8, 541-547.	0.2	3
100	Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement. Journal of the Korea Concrete Institute, 2012, 24, 225-232.	0.1	3
101	Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars. Journal of the Korea Concrete Institute, 2017, 29, 43-51.	0.1	3
102	Effect of Confined High-Strength Concrete Columns. Journal of the Korea Concrete Institute, 2003, 15, 747-758.	0.1	3
103	Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams. Journal of the Korea Concrete Institute, 2010, 22, 399-407.	0.1	3
104	Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load. Journal of the Korea Concrete Institute, 2014, 26, 731-739.	0.1	3
105	Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete. Journal of the Korea Concrete Institute, 2015, 27, 229-236.	0.1	3
106	Effects of Steel Fiber Volume Fraction on Compressive and Flexural Behaviors of Alkali-Activated Slag (AAS) Concrete. Applied Mechanics and Materials, 2014, 525, 469-472.	0.2	2
107	Compressive Strength Effects on Flexural Behavior of Steel Fiber Reinforced Concrete. Key Engineering Materials, 0, 709, 101-104.	0.4	2
108	Shear performance of embedded anchor plates in reinforced concrete tilt-up panels under monotonic and cyclic loadings. Archives of Civil and Mechanical Engineering, 2018, 18, 430-441.	1.9	2

#	Article	lF	CITATIONS
109	Field Application of Low Heat Concrete Using Strontium Hydroxide Based Latent Heat Material. Journal of the Korea Institute for Structural Maintenance Inspection, 2011, 15, 218-226.	0.1	2
110	Finite element analysis for structural evaluation of marine loading arm. Contemporary Engineering Sciences, 0, 8, 387-392.	0.2	2
111	Seismic behavior of high-strength concrete flexural walls with boundary elements. Structural Engineering and Mechanics, 2004, 18, 493-516.	1.0	2
112	Experimental studies on seismic behavior of steel coupling beams. Structural Engineering and Mechanics, 2005, 20, 695-712.	1.0	2
113	High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh. Journal of the Korea Concrete Institute, 2015, 27, 103-113.	0.1	2
114	Effects of Aggregate Size and Fiber Volume Fraction on Flexural Properties of Steel Fiber Reinforced Concrete (SFRC). Journal of the Architectural Institute of Korea Structure and Construction, 2015, 31, 45-54.	0.1	2
115	Seismic Retrofit of an Existing School Building using CIP-Infilled Shear Walls and Steel Braces. The Journal of Korean Institute of Educational Facilities, 2012, 19, 21-28.	0.0	2
116	Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites. Journal of the Korea Concrete Institute, 2009, 21, 327-335.	0.1	2
117	Tension-Stiffening and Cracking Behavior of 100 MPa Shrinkage-Compensated Ultra High-Strength Strain-Hardening Cement Composite (UHS-SHCC) Ties. Journal of the Korea Concrete Institute, 2013, 25, 371-379.	0.1	2
118	Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact. Journal of the Korea Concrete Institute, 2015, 27, 411-418.	0.1	2
119	Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC). Journal of the Korea Concrete Institute, 2016, 28, 41-48.	0.1	2
120	Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs). Journal of the Korea Concrete Institute, 2016, 28, 665-672.	0.1	2
121	Influence of CNT Incorporation on the Carbonation of Conductive Cement Mortar. Materials, 2021, 14, 6721.	1.3	2
122	Mechanisms of high frost scaling resistance of SHCC. Construction and Building Materials, 2022, 324, 126300.	3.2	2
123	Acoustic Emission Monitoring and Fracture Process of Reinforced Concrete Beams Strengthened in Flexure with CFRP. Advanced Materials Research, 0, 163-167, 2581-2584.	0.3	1
124	Size Effect of High Performance Concrete with Blast Furnace Slag on Compressive Strength and Modulus of Elasticity. Applied Mechanics and Materials, 0, 405-408, 2820-2823.	0.2	1
125	Panel Shear Strength of Steel Coupling Beam-Pseudo Strain Hardening Cementitious Composite Wall Connection. Applied Mechanics and Materials, 2013, 328, 965-969.	0.2	1
126	Damage Tolerance of Reinforced Concrete (RC) Beams with a Layer of PE Fiber Reinforced Strain-Hardening Cement Composite (PE-SHCC). Applied Mechanics and Materials, 0, 372, 219-222.	0.2	1

#	Article	IF	CITATIONS
127	Influence of Cold Weather on Compressive Strength in High Performance with Silica Fume. Key Engineering Materials, 0, 627, 445-448.	0.4	1
128	Tensile and Cracking Behaviors of Strain-Hardening Cement Composite (SHCC) with Fluosilicate Based Shrinkage-Reducing Agent (SRA). Applied Mechanics and Materials, 0, 525, 473-477.	0.2	1
129	The Behavior of Pseudo Strain-Hardening Cementitious Composite (PSH2C) Using Synthetic Fibers under Uniaxial Tensile Loading. Key Engineering Materials, 0, 627, 449-452.	0.4	1
130	Influence of Insulation Type on In-Plane Shear Behavior of Insulated Concrete Sandwich Panels (ICSP) with GFRP Grid Shear Connectors. Applied Mechanics and Materials, 0, 525, 416-419.	0.2	1
131	Influence of Curing Temperature on the Compressive Strength of High Performance Concrete. Applied Mechanics and Materials, 0, 597, 316-319.	0.2	1
132	Steel fibre reinforcing effects on engineering properties of cement-less concretes with AAS. Magazine of Concrete Research, 2015, 67, 206-214.	0.9	1
133	Seismic performance of composite coupling beams with diagonal steel tubes. Magazine of Concrete Research, 2018, 70, 280-291.	0.9	1
134	Steel Reinforcing Bar and Steel Fibers Content Effect on Tensile and Electrical Behaviors of Strain-Hardening Cement Composite (SHCC) with MWCNTs in Direct Tension. Applied Sciences (Switzerland), 2021, 11, 2446.	1.3	1
135	Effects of insulation types on in-plane shear behavior of insulated concrete sandwich wall panels with GFRP shear connector. Contemporary Engineering Sciences, 0, 8, 315-322.	0.2	1
136	Prestressed effect of reinforced concrete frame with grid shape steel element. Contemporary Engineering Sciences, 0, 9, 95-101.	0.2	1
137	Durability and Crack Control of Concrete Using Fluosilicates Based Composite. Journal of the Korea Concrete Institute, 2006, 18, 57-64.	0.1	1
138	Effect of Recycled Coarse Aggregate (RCA) Replacement Level on the Bond Behaviour between RCA Concrete and Deformed Rebars. Journal of the Korea Concrete Institute, 2010, 22, 123-130.	0.1	1
139	Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers. Journal of the Korea Concrete Institute, 2012, 24, 233-240.	0.1	1
140	Strength and dissipated energy of steel fiber reinforced concrete link beams. Contemporary Engineering Sciences, 0, 8, 549-555.	0.2	1
141	Strain-hardening and cracking behavior of fiber-reinforced sustainable cement composites under direct tension. Contemporary Engineering Sciences, 0, 8, 757-764.	0.2	1
142	Cracking Behavior and Flexural Performance of RC Beam with Strain Hardening Cement Composite and High-Strength Reinforcing Bar. Journal of the Korea Concrete Institute, 2015, 27, 37-44.	0.1	1
143	Influence of Low Temperatures. RILEM State-of-the-Art Reports, 2017, , 101-108.	0.3	1
144	Hysteretic behavior and design specification of composite beam with slit around column. Engineering Structures, 2006, 28, 818-828.	2.6	0

#	Article	IF	CITATIONS
145	Seismic Performance of Steel Braces Jointed with High Performance Fiber Reinforced Cementitious Composites and Steel Bars. Advances in Structural Engineering, 2010, 13, 1115-1127.	1.2	0
146	Assessing the Fracture and Damage Process in Recycled Aggregate Concrete under Compressive Loading by Acoustic Emission. Advanced Materials Research, 0, 163-167, 2528-2531.	0.3	0
147	Using Acoustic Emission to Quantify Damage in High-Performance Fiber-Reinforced Cement Composites under Cyclically Compressive Loading. Advanced Materials Research, 0, 163-167, 2549-2552.	0.3	0
148	Tension Stiffening and Cracking Behavior of Ultra High Strength Strain-Hardening Cement Composite (UHS-SHCC) Ties in Monotonic and Cyclic Tension. Applied Mechanics and Materials, 0, 204-208, 3982-3985.	0.2	0
149	The Influence on Horizontal Ties of Steel Coupling Beams. Applied Mechanics and Materials, 2012, 204-208, 1229-1232.	0.2	0
150	Hysteretic Behavior of Reinforced Concrete Coupling Beams with Diagonal Headed-Bars. Applied Mechanics and Materials, 0, 351-352, 734-737.	0.2	0
151	The Effect of Alternative Reinforcement Details in Reinforced Concrete Coupling Beams. Applied Mechanics and Materials, 0, 405-408, 865-868.	0.2	0
152	Vertical Seam Effect on Seismic Performance of Reinforced Concrete Squat Shear Walls with Rectangular Cross-Section. Advanced Materials Research, 0, 663, 159-163.	0.3	0
153	Stiffness and Energy Dissipation of Steel Coupling Beam Embedded in the PSH2C and Normal Concrete Shear Wall. Applied Mechanics and Materials, 2013, 351-352, 556-559.	0.2	0
154	Influence of Different Curing Days on Mechanical Properties of Concrete with Admixtures of Fly Ash, Blast Furnace Slag and Silica Fume. Applied Mechanics and Materials, 0, 405-408, 2843-2846.	0.2	0
155	Mechanical Properties of Sprayable Fiber Reinforced Strain-Hardening Cement Composite (SHCC). Applied Mechanics and Materials, 2013, 372, 211-214.	0.2	0
156	Influences of Vertical Slits on the Shear Behavior of Strain-Hardening Cement Composite (SHCC) Infill Walls Based on FEM Analysis. Applied Mechanics and Materials, 2013, 372, 227-230.	0.2	0
157	Effects of Shrinkage Reducing Admixture (SRA) on the Tensile Behavior of Strain-Hardening Cement Composite (SHCC). Applied Mechanics and Materials, 0, 372, 203-206.	0.2	0
158	The Seismic Behavior of Pseudo Strain-Hardening Cemetitious Composites Coupling Beams with Polyvinyl Alcohol Fiber. Applied Mechanics and Materials, 0, 353-356, 2119-2122.	0.2	0
159	Strength, Stiffness and Energy Dissipated Characteristics of Reinforced Concrete Coupling Beams with Diagonal Headed-Bars. Applied Mechanics and Materials, 0, 405-408, 981-984.	0.2	0
160	Acoustic Emission to Detect Damage in FRP Strength Under Freeze and Thaw Cycles. , 0, , .		0
161	Seismic Performance of Strain-Hardening Cement Composite (SHCC) Squat Shear Walls with vertical slits. Applied Mechanics and Materials, 0, 525, 427-430.	0.2	0
162	Structural Behaviors of Non-Ductile Reinforced Concrete Frames with Engineered Cement Composite (ECC) Wing Wall Elements. Applied Mechanics and Materials, 2014, 597, 328-331.	0.2	0

#	Article	IF	CITATIONS
163	Seismic Performance of Steel Fiber Reinforced Concrete (SFRC) Infill Wall Element with Vertical Slits for Strengthening of Non-Ductile Frame. Applied Mechanics and Materials, 2014, 525, 431-434.	0.2	0
164	Effect of Mineral Admixture on Modulus of Elasticity in High Performance Concrete under Hot Weather Condition. Key Engineering Materials, 0, 627, 401-404.	0.4	0
165	Effect of Steel Fiber Volume Fraction and Curing Conditions on the Compressive Behavior of Alkali-Activated Slag Concrete. Applied Mechanics and Materials, 0, 525, 491-494.	0.2	Ο
166	Thermal Characteristics of Mat Foundation with Different Lift Thickness of Mass Concrete Including Strontium-Based Latent Heat Binder. Applied Mechanics and Materials, 2014, 525, 461-464.	0.2	0
167	Flexural Behaviors of Double Reinforced Beam with High-Performance Cement Composite and Steel Bar. Applied Mechanics and Materials, 2014, 525, 412-415.	0.2	0
168	Feasibility of Reduced Lap-Spliced Length in Polyethylene Fiber-Reinforced Strain-Hardening Cementitious Composite. Advances in Materials Science and Engineering, 2018, 2018, 1-10.	1.0	0
169	Hysteretic Response of Tilt-Up Concrete Precast Walls with Embedded Steel Plate Connections. Sustainability, 2020, 12, 7907.	1.6	0
170	Shear Behavior of a Reinforced Concrete Frame Retrofitted with a Hinged Steel Damping System. Sustainability, 2020, 12, 10360.	1.6	0
171	Bond Behavior between Parent Concrete and Carbon Fiber Mesh. Journal of the Korea Concrete Institute, 2003, 15, 769-777.	0.1	0
172	Seismic Behavior of High-Strength Reinforced Concrete Bridge Columns. Journal of the Korea Concrete Institute, 2005, 17, 505-511.	0.1	0
173	Bearing Strength of Hybrid Coupled Shear Wall Connections. Journal of the Korea Concrete Institute, 2005, 17, 1065-1074.	0.1	0
174	The Steel Coupling Beam-Wall Connections Strength. Journal of the Korea Concrete Institute, 2006, 18, 135-145.	0.1	0
175	Quantitative Damage Evaluation of Fiber-Reinforced Cement Composite Using Acoustic Emission Technique. Journal of the Korea Concrete Institute, 2009, 21, 457-464.	0.1	0
176	Assessment of the Damage in High Performance Fiber-Reinforced Cement Composite under Compressive Loading Using Acoustic Emission. Journal of the Korea Concrete Institute, 2009, 21, 589-597.	0.1	0
177	Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials. Journal of the Korea Concrete Institute, 2011, 23, 109-120.	0.1	0
178	Influence of Strain-Hardening Cement Composite's Tensile Properties on the Seismic Performance of Infill Walls. Journal of the Korea Concrete Institute, 2012, 24, 3-14.	0.1	0
179	Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs). Journal of the Korea Concrete Institute, 2012, 24, 111-120.	0.1	0
180	Seismic Performance of Shear Connections in Fiber-Reinforced Strain-Hardening Cement Composite (SHCC) Under Cyclic Loading. Advanced Science Letters, 2012, 13, 251-256.	0.2	0

#	Article	IF	CITATIONS
181	Influence of CSA Expansive Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite (SHCC). Advanced Science Letters, 2012, 13, 727-731.	0.2	0
182	Tension Stiffening Behavior of Strain-Hardening Cement Composite (SHCC) Ties in Monotonic and Cyclic Loadings. Advanced Science Letters, 2012, 14, 425-430.	0.2	0
183	Seismic Resistance of Precast Concrete Frame System with Hollow Column and Universal Coupler. Advanced Science Letters, 2012, 14, 23-29.	0.2	0
184	Flexural Performance and Crack Damage Mitigation of Plain Concrete Beams Layered with Reinforced SHCC Materials with Polyethylene Fibers. Journal of the Korea Concrete Institute, 2012, 24, 361-368.	0.1	0
185	Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP). Journal of the Korea Concrete Institute, 2014, 26, 421-428.	0.1	0
186	Strengthening of non-seismic reinforced concrete frames with steel element. Contemporary Engineering Sciences, 0, 8, 817-823.	0.2	0
187	Numerical prediction for bond stress-slip relationship between deformed steel rebar and recycled coarse aggregate concrete. Contemporary Engineering Sciences, 0, 8, 485-490.	0.2	0
188	The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements. Journal of the Korea Concrete Institute, 2015, 27, 541-549.	0.1	0
189	Analysis of High Velocity Impact on SFRC Panels Using ABAQUS. Journal of the Korea Concrete Institute, 2016, 28, 141-148.	0.1	0
190	Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites. Journal of the Korea Concrete Institute, 2017, 29, 149-157.	0.1	0
191	Strength and COâ,, Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials. Journal of the Korea Concrete Institute, 2017, 29, 379-387.	0.1	0
192	Temperature Loss Compensation for Semi-adiabatic Test Using Newton's Law of Cooling. Journal of the Korea Concrete Institute, 2018, 30, 189-196.	0.1	0