Jérémie Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17, 820-826.	27.5	1,046
2	Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097-1104.	12.6	669
3	Complex Refractive Index Spectra of CH ₃ NH ₃ PbI ₃ Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. Journal of Physical Chemistry Letters, 2015, 6, 66-71.	4.6	491
4	Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm ² . Journal of Physical Chemistry Letters, 2016, 7, 161-166.	4.6	448
5	Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2016, 1, 474-480.	17.4	332
6	Enabling Flexible All-Perovskite Tandem Solar Cells. Joule, 2019, 3, 2193-2204.	24.0	331
7	Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – An Overview. Advanced Materials Interfaces, 2018, 5, 1700731.	3.7	321
8	Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 2020, 4, 1759-1775.	24.0	284
9	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	19.5	255
10	Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nature Energy, 2019, 4, 939-947.	39.5	235
11	Sputtered rear electrode with broadband transparency for perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 407-413.	6.2	223
12	Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction. Advanced Energy Materials, 2018, 8, 1701609.	19.5	192
13	25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a <i>p</i> -type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts. ACS Energy Letters, 2019, 4, 844-845.	17.4	152
14	I ₂ vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions. Energy and Environmental Science, 2019, 12, 3074-3088.	30.8	131
15	In Situ TEM Analysis of Organic–Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias. Nano Letters, 2016, 16, 7013-7018.	9.1	115
16	Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Applied Physics Letters, 2016, 109, .	3.3	105
17	Complex Refractive Indices of Cesium–Formamidinium-Based Mixed-Halide Perovskites with Optical Band Gaps from 1.5 to 1.8 eV. ACS Energy Letters, 2018, 3, 742-747.	17.4	89
18	Perovskite/Perovskite/Silicon Monolithic Triple-Junction Solar Cells with a Fully Textured Design. ACS Energy Letters, 2018, 3, 2052-2058.	17.4	87

Jérémie Werner

#	Article	IF	CITATIONS
19	Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst. Joule, 2019, 3, 2930-2941.	24.0	85
20	Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 17260-17267.	8.0	80
21	Improving Low-Bandgap Tin–Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing. ACS Energy Letters, 2020, 5, 1215-1223.	17.4	78
22	Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution. IEEE Journal of Photovoltaics, 2017, 7, 590-597.	2.5	45
23	Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy and Environmental Science, 2020, 13, 3393-3403.	30.8	43
24	Toward Annealing‧table Molybdenumâ€Oxideâ€Based Hole‧elective Contacts For Silicon Photovoltaics. Solar Rrl, 2018, 2, 1700227.	5.8	42
25	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	21.0	39
26	Multimodal Microscale Imaging of Textured Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters, 2021, 6, 2293-2304.	17.4	25
27	Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 5114-5120.	4.6	22
28	Effects of X-rays on Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 17949-17956.	3.1	21
29	The Role of Water in the Reversible Optoelectronic Degradation of Hybrid Perovskites at Low Pressure. Journal of Physical Chemistry C, 2017, 121, 25659-25665.	3.1	19
30	Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation. Journal of Physical Chemistry Letters, 2017, 8, 838-843.	4.6	18
31	Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air. IEEE Journal of Photovoltaics, 2017, 7, 1563-1568.	2.5	14
32	Elemental distribution and charge collection at the nanoscale on perovskite solar cells. , 2016, , .		8
33	Perovskite/Silicon Tandem Solar Cells: Challenges Towards High- Efficiency in 4-Terminal and Monolithic Devices. , 2017, , .		3
34	High-efficiency perovskite/silicon heterojunction tandem solar cells. , 2016, , .		2
35	Hybrid sequential deposition process for fully textured perovskite/silicon tandem solar cells. , 2018, ,		2
36	Hybrid Fabrication Method for High Efficiency Monolithic Perovskite/Silicon Tandem Solar Cells. , 0, ,		0

3