Karen Beard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573595/publications.pdf

Version: 2024-02-01

		117625	46799
114	8,528	34	89
papers	citations	h-index	g-index
119	119	119	12112
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 2007, 88, 2783-2792.	3.2	3,224
2	Plant–soil feedbacks: a metaâ€analytical review. Ecology Letters, 2008, 11, 980-992.	6.4	802
3	A Metaâ€Analytic Review of Corridor Effectiveness. Conservation Biology, 2010, 24, 660-668.	4.7	407
4	Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 2016, 204, 23-31.	4.1	337
5	Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21, 1319-1329.	6.4	283
6	Behavioral reduction of infection risk. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9165-9168.	7.1	207
7	Woody plant encroachment facilitated by increased precipitation intensity. Nature Climate Change, 2013, 3, 833-837.	18.8	206
8	Soil history as a primary control on plant invasion in abandoned agricultural fields. Journal of Applied Ecology, 2006, 43, 868-876.	4.0	141
9	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
10	A depthâ€controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytologist, 2010, 188, 199-209.	7.3	119
11	STRUCTURAL AND FUNCTIONAL RESPONSES OF A SUBTROPICAL FOREST TO 10 YEARS OF HURRICANES AND DROUGHTS. Ecological Monographs, 2005, 75, 345-361.	5.4	118
12	Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia, 2013, 171, 25-37.	2.0	115
13	Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biology and Biochemistry, 2011, 43, 823-830.	8.8	108
14	Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia, 2002, 133, 583-593.	2.0	97
15	Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3020-3026.	2.6	84
16	The effects of the frog Eleutherodactylus coqui on invertebrates and ecosystem processes at two scales in the Luquillo Experimental Forest, Puerto Rico. Journal of Tropical Ecology, 2003, 19, 607-617.	1.1	76
17	Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances, 2020, 6, eabb8458.	10.3	73
18	Exotic plant communities shift water-use timing in a shrub-steppe ecosystem. Plant and Soil, 2006, 288, 271-284.	3.7	69

#	Article	IF	CITATIONS
19	Activated Carbon as a Restoration Tool: Potential for Control of Invasive Plants in Abandoned Agricultural Fields. Restoration Ecology, 2006, 14, 251-257.	2.9	68
20	An invasive frog, Eleutherodactylus coqui, increases new leaf production and leaf litter decomposition rates through nutrient cycling in Hawaii. Biological Invasions, 2008, 10, 335-345.	2.4	57
21	Citizen science reveals widespread negative effects of roads on amphibian distributions. Biological Conservation, 2014, 180, 31-38.	4.1	57
22	Potential consequences of the coqui frog invasion in Hawaii. Diversity and Distributions, 2005, 11, 427-433.	4.1	56
23	Field work ethics in biological research. Biological Conservation, 2016, 203, 268-271.	4.1	56
24	Infection of an invasive frog Eleutherodactylus coqui by the chytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biological Conservation, 2005, 126, 591-595.	4.1	55
25	The Missing Angle: Ecosystem Consequences of Phenological Mismatch. Trends in Ecology and Evolution, 2019, 34, 885-888.	8.7	44
26	Genetic Variation Within and Among Mats of the Reindeer Lichen, Cladina Subtenuis. Lichenologist, 1996, 28, 171-182.	0.8	41
27	Diet of the Invasive Frog, Eleutherodactylus Coqui, in Hawaii. Copeia, 2007, 2007, 281-291.	1.3	41
28	NonnativePhragmites australisInvasion into Utah Wetlands. Western North American Naturalist, 2011, 70, 541-552.	0.4	41
29	Introduction effort, climate matching and species traits as predictors of global establishment success in nonâ€native reptiles. Diversity and Distributions, 2015, 21, 64-74.	4.1	41
30	Predicting the distribution potential of an invasive frog using remotely sensed data in Hawaii. Diversity and Distributions, 2012, 18, 648-660.	4.1	40
31	Biology and Impacts of Pacific Island Invasive Species. 5. <i>Eleutherodactylus coqui</i> , the Coqui Frog (Anura: Leptodactylidae). Pacific Science, 2009, 63, 297-316.	0.6	39
32	Testing predictions of a threeâ€species plant–soil feedback model. Journal of Ecology, 2011, 99, 542-550.	4.0	39
33	Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Molecular Ecology, 2009, 18, 3603-3615.	3.9	38
34	Decoupling plant-growth from land-use legacies in soil microbial communities. Soil Biology and Biochemistry, 2008, 40, 1059-1068.	8.8	37
35	Effectiveness of Predicting Breeding Bird Distributions Using Probabilistic Models. Conservation Biology, 1999, 13, 1108-1116.	4.7	35
36	Live long and prosper: plant–soil feedback, lifespan, and landscape abundance covary. Ecology, 2017, 98, 3063-3073.	3.2	35

#	Article	IF	CITATIONS
37	Antipredator mechanisms of post-metamorphic anurans: a global database and classification system. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	35
38	Reduced soil compaction enhances establishment of non-native plant species. Plant Ecology, 2007, 193, 223-232.	1.6	33
39	Coqui frog invasions change invertebrate communities in Hawaii. Biological Invasions, 2012, 14, 939-948.	2.4	31
40	Increased abundance of native and nonâ€native spiders with habitat fragmentation. Diversity and Distributions, 2008, 14, 655-665.	4.1	30
41	Population Density Estimates and Growth Rates of Eleutherodactylus coqui in Hawaii. Journal of Herpetology, 2008, 42, 626.	0.5	30
42	Detecting nutrient pool changes in rocky forest soils. Soil Science Society of America Journal, 2003, 67, 1282-1286.	2.2	28
43	Back to the future: conserving functional and phylogenetic diversity in amphibian-climate refuges. Biodiversity and Conservation, 2019, 28, 1049-1073.	2.6	28
44	Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests. Biological Invasions, 2009, 11, 845-855.	2.4	26
45	Most soil trophic guilds increase plant growth: a metaâ€analytical review. Oikos, 2014, 123, 1409-1419.	2.7	26
46	Phylogenetic study of Eleutherodactylus coqui (Anura: Leptodactylidae) reveals deep genetic fragmentation in Puerto Rico and pinpoints origins of Hawaiian populations. Molecular Phylogenetics and Evolution, 2007, 45, 716-728.	2.7	25
47	Using plantâ€soil feedbacks to predict plant biomass in diverse communities. Ecology, 2016, 97, 2064-2073.	3.2	25
48	Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography, 2020, 47, 275-287.	3.0	25
49	Effects of roads and land use on frog distributions across spatial scales and regions in the $\c< cp>E$ astern and $\c< cp>C$ entral $\c< cp>U$ nited $\c< cp>S$ tates. Diversity and Distributions, 2017, 23, 158-170.	4.1	24
50	Quantitative Assessment of Habitat Preferences for the Puerto Rican Terrestrial Frog, Eleutherodactylus coqui. Journal of Herpetology, 2003, 37, 10-17.	0.5	23
51	Detection probabilities of two introduced frogs in Hawaii: implications for assessing non-native species distributions. Biological Invasions, 2012, 14, 889-900.	2.4	23
52	Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2960-2975.	3.0	23
53	Acoustic metrics predict habitat type and vegetation structure in the Amazon. Ecological Indicators, 2020, 117, 106679.	6.3	23
54	Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazilâ \in ^{Ms} Atlantic Forest. PLoS ONE, 2016, 11, e0156781.	2.5	22

#	Article	IF	Citations
55	Delayed herbivory by migratory geese increases summerâ€long CO ₂ uptake in coastal western Alaska. Global Change Biology, 2019, 25, 277-289.	9.5	22
56	Indigenous Knowledge Informing Management of Tropical Forests: The Link between Rhythms in Plant Secondary Chemistry and Lunar Cycles. Ambio, 2002, 31, 485-490.	5.5	21
57	Potential predators of an invasive frog (Eleutherodactylus coqui) in Hawaiian forests. Journal of Tropical Ecology, 2006, 22, 345-347.	1.1	21
58	Biotic acceptance in introduced amphibians and reptiles in <scp>E</scp> urope and <scp>N</scp> orth <scp>A</scp> merica. Global Ecology and Biogeography, 2013, 22, 192-201.	5.8	21
59	Reducing sampler error in soil research. Soil Biology and Biochemistry, 2004, 36, 383-385.	8.8	19
60	Phenological mismatch between season advancement and migration timing alters Arctic plant traits. Journal of Ecology, 2019, 107, 2503-2518.	4.0	19
61	Genetic Basis of a Color Pattern Polymorphism in the Coqui Frog Eleutherodactylus coqui. Journal of Heredity, 2010, 101, 703-709.	2.4	18
62	Biology and Impacts of Pacific Island Invasive Species. 8. <i>Eleutherodactylus Planirostris,</i> the Greenhouse Frog (Anura: Eleutherodactylidae). Pacific Science, 2012, 66, 255-270.	0.6	18
63	Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses to Reduced Precipitation: Results from a Globally Coordinated Field Experiment. Ecosystems, 2018, 21, 1432-1444.	3.4	18
64	Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia - Reptilia, 2012, 33, 387-392.	0.5	17
65	The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil's Atlantic Forest. PLoS ONE, 2015, 10, e0142893.	2.5	17
66	Woody plant growth increases with precipitation intensity in a cold semiarid system. Ecology, 2021, 102, e03212.	3.2	17
67	Diet of the Introduced Greenhouse Frog in Hawaii. Copeia, 2012, 2012, 121-129.	1.3	16
68	Activated carbon decreases invasive plant growth by mediating plant–microbe interactions. AoB PLANTS, 2015, 7, .	2.3	16
69	Small differences in root distributions allow resource niche partitioning. Ecology and Evolution, 2020, 10, 9776-9787.	1.9	16
70	Clinal Variation in Calls of Native and Introduced Populations of Eleutherodactylus coqui. Copeia, 2011, 2011, 18-28.	1.3	15
71	Aerially applied citric acid reduces the density of an invasive frog in Hawaii, USA. Wildlife Research, 2008, 35, 676.	1.4	14
72	Threatened and invasive reptiles are not two sides of the same coin. Global Ecology and Biogeography, 2016, 25, 1050-1060.	5.8	14

#	Article	IF	Citations
73	Invasive coqui frogs are associated with greater abundances of nonnative birds in Hawaii, USA. Condor, 2018, 120, 16-29.	1.6	14
74	Migratory goose arrival time plays a larger role in influencing forage quality than advancing springs in an Arctic coastal wetland. PLoS ONE, 2019, 14, e0213037.	2.5	14
75	Predictors of Participation in Invasive Species Control Activities Depend on Prior Experience with the Species. Environmental Management, 2019, 63, 60-68.	2.7	14
76	Finding Endemic Soil-Based Controls for Weed Growth 1. Weed Technology, 2004, 18, 1353-1358.	0.9	13
77	A social–ecological systems approach to non-native species: Habituation and its effect on management of coqui frogs in Hawaii. Biological Conservation, 2014, 180, 187-195.	4.1	13
78	Bromeliad Selection byPhyllodytes luteolus(Anura, Hylidae): The Influence of Plant Structure and Water Quality Factors. Journal of Herpetology, 2016, 50, 108-112.	0.5	13
79	Disturbance Regime. , 2012, , 164-200.		12
80	Uncovering the Natural History of the Bromeligenous Frog Crossodactylodes izecksohni (Leptodactylidae, Paratelmatobiinae). South American Journal of Herpetology, 2019, 14, 136.	0.5	12
81	Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake. Environmental Research Letters, 2018, 13, 044032.	5.2	11
82	Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa. Plant and Soil, 2017, 417, 523-533.	3.7	10
83	Different prey resources suggest little competition between non-native frogs and insectivorous birds despite isotopic niche overlap. Biological Invasions, 2017, 19, 1001-1013.	2.4	10
84	Direct effects of warming increase woody plant abundance in a subarctic wetland. Ecology and Evolution, 2018, 8, 2868-2879.	1.9	10
85	Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars. Diversity, 2021, 13, 566.	1.7	10
86	VEGETATION RESPONSES TO 35 AND 55 YEARS OF NATIVE UNGULATE GRAZING IN SHRUBSTEPPE COMMUNITIES. Western North American Naturalist, 2007, 67, 16-25.	0.4	9
87	A combined tracer/evapotranspiration model approach estimates plant water uptake in native and non-native shrub-steppe communities. Journal of Arid Environments, 2015, 121, 67-78.	2.4	9
88	Management of Invasive Coqui Frog Populations in Hawaii. Outlooks on Pest Management, 2012, 23, 166-169.	0.2	9
89	Amphibians of Santa Teresa, Brazil: the hotspot further evaluated. ZooKeys, 2019, 857, 139-162.	1.1	9
90	Influence of pocket gopher mounds on nonnative plant establishment in a shrubsteppe ecosystem. Western North American Naturalist, 2008, 68, 374-381.	0.4	8

#	Article	IF	Citations
91	Cast adrift on an island: introduced populations experience an altered balance between selection and drift. Biology Letters, 2012, 8, 890-893.	2.3	7
92	Rodent-Mediated Interactions Among Seed Species of Differing Quality in a Shrubsteppe Ecosystem. Western North American Naturalist, 2013, 73, 426-441.	0.4	7
93	Cloud cover and delayed herbivory relative to timing of spring onset interact to dampen climate change impacts on net ecosystem exchange in a coastal Alaskan wetland. Environmental Research Letters, 2019, 14, 084030.	5.2	7
94	Sexâ€related differences in aging rate are associated with sex chromosome system in amphibians. Evolution; International Journal of Organic Evolution, 2022, 76, 346-356.	2.3	7
95	Temporal Foraging Patterns of Nonnative Coqui Frogs (<i>Eleutherodactylus coqui</i>) in Hawaii. Journal of Herpetology, 2016, 50, 582-588.	0.5	6
96	Invasive coqui frogs are associated with differences in mongoose and rat abundances and diets in Hawaii. Biological Invasions, 2019, 21, 2177-2190.	2.4	6
97	Lizard and frog removal increases spider abundance but does not cascade to increase herbivory. Biotropica, 2021, 53, 681-692.	1.6	6
98	A modern two″ayer hypothesis helps resolve the  savanna problem'. Ecology Letters, 2022, 25, 1952-196	506.4	6
99	Body Size and Life History Traits in Native and Introduced Populations of Coqui Frogs. Copeia, 2018, 106, 161-170.	1.3	5
100	When and Where Biota Matter. , 2012, , 272-304.		5
101	Global assessment of establishment success for amphibian and reptile invaders. Wildlife Research, 2012, 39, 637.	1.4	4
102	Diet of the Nonnative Greenhouse Frog (<i>Eleutherodactylus planirostris</i>) in Maui, Hawaii. Journal of Herpetology, 2015, 49, 586-593.	0.5	4
103	Chronosequence and direct observation approaches reveal complementary community dynamics in a novel ecosystem. PLoS ONE, 2019, 14, e0207047.	2.5	4
104	Herbivory changes soil microbial communities and greenhouse gas fluxes in a high-latitude wetland. Microbial Ecology, 2022, 83, 127-136.	2.8	4
105	Isolation of microsatellite loci from the coqui frog, <i>Eleutherodactylus coqui</i> . Molecular Ecology Resources, 2008, 8, 139-141.	4.8	3
106	Community-level response to habitat structure manipulations: An experimental case study in a tropical ecosystem. Forest Ecology and Management, 2013, 307, 313-321.	3.2	3
107	Early Goose Arrival Increases Soil Nitrogen Availability More Than an Advancing Spring in Coastal Western Alaska. Ecosystems, 2020, 23, 1309-1324.	3.4	3
108	Quantifying Ecosystem Controlsand Their Contextual Interactionson Nutrient Export fromDeveloping Forest Mesocosms. Ecosystems, 2005, 8, 210-224.	3.4	2

#	Article	IF	CITATIONS
109	Predator–Prey Reunion: Non-native CoquÃ-Frogs Avoid Their Native Predators. Ichthyology and Herpetology, 2021, 109, .	0.8	2
110	Genetic Variation Within and Among Mats of the Reindeer Lichen, Cladina Subtenuis. Lichenologist, 1996, 28, 171.	0.8	1
111	Invasive Plants in Wildlife Refuges: Coordinated Research with Undergraduate Ecology Courses. BioScience, 2013, 63, 644-656.	4.9	1
112	Goose Feces Effects on Subarctic Soil Nitrogen Availability and Greenhouse Gas Fluxes. Ecosystems, 2023, 26, 187-200.	3.4	1
113	Shortâ€term effects of experimental goose grazing and warming differ in three <scp>lowâ€Arctic</scp> coastal wetland plant communities. Journal of Vegetation Science, 2022, 33, .	2.2	1
114	Winter Wheat Resistant to Increases in Rain and Snow Intensity in a Semi-Arid System. Agronomy, 2021, 11, 751.	3.0	0